Systèmes 2x2

Exercice 1

Soit
$$A = \begin{pmatrix} 2 & 2 \\ -2 & -3 \end{pmatrix}$$

- 1. Déterminer les valeurs propres de A et les sous-espaces propres associés.
- 2. En déduire que A est diagonalisable et déterminer une matrice P inversible n'ayant que des 1 sur sa diagonale et vérifiant:

$$A = P \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} P^{-1} \quad \text{avec} \quad \lambda_1 < \lambda_2$$

3. On considère le système différentiel linéai

On considère le système différentiel linéaire :
$$(\mathscr{S}) : \forall t \in \mathbb{R}, \quad \begin{cases} x'(t) = 2x(t) + 2y(t) \\ y'(t) = -2x(t) - 3y(t) \end{cases} \text{ d'inconnues } x \text{ et } y, \text{ fonctions de classe } \mathscr{C}^1 \text{ sur } \mathbb{R}$$
 On posera : $\forall t \in \mathbb{R}, \quad X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ où $x \text{ et } y \text{ sont des fonctions de classe } \mathscr{C}^1 \text{ sur } \mathbb{R}$

a. On pose :
$$\forall t \in \mathbb{R}$$
, $Y(t) = P^{-1}X(t) = \begin{pmatrix} a(t) \\ b(t) \end{pmatrix}$

Montrer que (x,y) est solution de (\mathscr{S}) si et seulement si les fonctions a et b sont de classe \mathscr{C}^1 et vérifient chacune une équation différentielle d'ordre 1 que l'on résoudra.

b. Montrer que (x,y) est une solution du système (\mathcal{S}) si, et seulement s'il existe deux réels α et β vérifiant:

$$\forall t \in \mathbb{R}, \quad x(t) = \alpha e^{-2t} - 2\beta e^t \quad \text{et} \quad y(t) = -2\alpha e^{-2t} + \beta e^t$$

c. Déterminer la solution vérifiant x(0) = 1 et y(0) = 0

Exercice 2

On considère le système différentiel linéaire :
$$(\mathscr{S}) : \forall t \in \mathbb{R}, \begin{cases} x_1'(t) = x_1(t) + 3x_2(t) \\ x_2'(t) = -2x_1(t) - 4x_2(t) \end{cases} \text{ d'inconnues } x_1 \text{ et } x_2, \text{ fonctions de classe } \mathscr{C}^1 \text{ sur } \mathbb{R}$$
 On posera : $\forall t \in \mathbb{R}, \quad X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} \text{ et } A = \begin{pmatrix} 1 & 3 \\ -2 & -4 \end{pmatrix}$

On posera :
$$\forall t \in \mathbb{R}$$
, $X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$ et $A = \begin{pmatrix} 1 & 3 \\ -2 & -4 \end{pmatrix}$

1. Soit
$$P = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$$

Montrer que P est inversible et que $D = P^{-1}AP$ est une matrice diagonale que l'on déterminera. On notera $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$

- 2. Quelles sont les valeurs propres de A? quels sont les sous-espaces propres associés?
- 3. Résoudre les équations différentielles y' = -y et y' = -2y sur \mathbb{R}
- **4.** En posant : $\forall t \in \mathbb{R}$, $Y(t) = P^{-1}X(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix}$, en déduire que les solutions de (\mathscr{S}) sont des combinaisons linéaires des fonctions $t \mapsto e^{-t}$ et $t \mapsto e^{-2t}$ que l'on explicitera.

5. (\$\mathcal{S}\$) admet-il un état d'équilibre? si oui, est-il stable?

Exercice 3

On considère le système différentiel linéaire :

$$(\mathscr{S}) \quad \forall t \in \mathbb{R}, \quad \begin{cases} x'(t) &= 3x(t) + 4y(t) \\ y'(t) &= -x(t) - y(t) \end{cases}$$
 d'inconnues x et y , fonctions de classe \mathscr{C}^1 sur \mathbb{R}

- 1. Soit $\beta \in \mathbb{R}$ et (E_{β}) l'équation différentielle $y' = y + \beta e^t$
 - a. Montrer que la fonction $t \mapsto \beta t e^t$ est une solution de E_{β}
 - **b.** En déduire toutes les solutions de E_{β}
- **2.** Déterminer une matrice A telle que le système $\mathscr S$ s'écrive : $\forall t \in \mathbb R$, X'(t) = AX(t)
- 3. Montrer que $A^2 = 2A I_2$. En déduire que A admet une et une seule valeur propre λ et que le sous-espace propre associé est de dimension 1 La matrice A est-elle diagonalisable?

4. Soit
$$P = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$
. Montrer que P est inversible et que $P^{-1}AP = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

5. On pose
$$\forall t \in \mathbb{R}$$
, $Y(t) = \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = P^{-1}X(t) = P^{-1}\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$

a. Montrer que x et y sont solutions de (\mathscr{S}) si, et seulement si a et b vérifient :

$$\forall t \in \mathbb{R}, \quad a'(t) = a(t) + b(t) \quad \text{et} \quad b'(t) = b(t)$$

b. En déduire que x et y sont solutions de (\mathscr{S}) si, et seulement s'il existe deux constantes α et β telles que :

$$\forall t \in \mathbb{R}, \quad \begin{cases} x(t) = (2\beta t + 2\alpha - \beta)e^t \\ y(t) = (\beta t + \beta - \alpha)e^t \end{cases}$$

Exercice 4

On fixe un réel $a, |a| \neq 1$

On considère le système différentiel :
$$(E_a)$$
 : $\forall t \in \mathbb{R}$,
$$\begin{cases} x_1'(t) = ax_1(t) + x_2(t) \\ x_2'(t) = x_1(t) + ax_2(t) \end{cases}$$

On note
$$X(t) = {}^{\mathbf{t}}(x_1(t), x_2(t))$$
 et $A = \begin{pmatrix} a & 1 \\ 1 & a \end{pmatrix}$ la matrice du système, de sorte que : $\forall t \in \mathbb{R}, \quad X'(t) = AX(t)$

- 1. a. Montrer que : $\lambda \in \operatorname{Sp}(A) \iff \lambda^2 2a\lambda + a^2 1 = 0$
 - **b.** En déduire que A admet deux valeurs propres réelles distinctes et non nulles $\lambda_1 > \lambda_2$
 - c. Montrer que, si $\lambda \in \mathrm{Sp}(A)$, alors $V = \begin{pmatrix} 1 \\ \lambda a \end{pmatrix}$ est un vecteur propre de A associé à la valeur propre λ
 - **d.** Déterminer une matrice P inversible de première ligne $(1 \ 1)$ telle que $A = PDP^{-1}$ avec $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$
 - e. Justifier que le seul point d'équilibre de E_a est $X^* = {}^{\mathbf{t}}(0 \quad 0)$

2. On suppose dans cette question que a > 1

a. Justifier que $\lambda_1 > \lambda_2 > 0$

b. Montrer que X^* n'est pas stable.

3. On suppose dans cette question que 0 < a < 1

a. Justifier que $\lambda_1 > 0 > \lambda_2$

b. Montrer que X^* n'est pas stable.

4. On suppose dans cette question que a < -1

a. Justifier que $\lambda_2 < \lambda_1 < 0$

b. Montrer que X^* est stable.

Systèmes 3x3

Exercice 5

On considère le système différentiel linéaire :

$$(\mathscr{S}): \quad \forall t \in \mathbb{R}, \quad \begin{cases} x'(t) &= & y(t) + z(t) \\ y'(t) &= x(t) \\ z'(t) &= x(t) \end{cases}$$

d'inconnues x, y et z, fonctions de classe \mathscr{C}^1 sur \mathbb{R}

On posera : $\forall t \in \mathbb{R}$, $X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$ avec x, y et z, fonctions de classe \mathscr{C}^1 sur \mathbb{R}

1. Déterminer la matrice A du système différentiel linéaire (\mathscr{S})

2. Justifier que A est diagonalisable.

3. Calculer A^3

4. Soit $V_{\lambda} = {}^{\mathbf{t}}(\lambda, 1, 1)$

Déterminer une condition sur λ pour que V_{λ} soit un vecteur propre de A

5. Soit
$$P = \begin{pmatrix} 0 & \sqrt{2} & -\sqrt{2} \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

Justifier que P est inversible et que $D=P^{-1}AP$ est une matrice diagonale.

3

6. Résoudre (\mathscr{S})

7. Déterminer le(s) point(s) d'équilibre de (\mathscr{S}) et leur stabilité.

Exercice 6

On considère le système différentiel linéaire :

$$(\mathscr{S}): \quad \forall t \in \mathbb{R}, \quad \begin{cases} x'(t) &= x(t) \\ y'(t) &= 2y(t) + z(t) \\ z'(t) &= 2z(t) \end{cases}$$

d'inconnues x, y et z, fonctions de classe \mathscr{C}^1 sur \mathbb{R}

- 1. Déterminer la matrice T du système différentiel linéaire (\mathcal{S})
- **2.** La matrice T est-elle inversible?
- **3.** Soit $k \in \mathbb{R}$

On considère l'équation différentielle : (E_k) : $y' = 2y + ke^{2t}$

- a. Résoudre l'équation homogène associée à (E_k)
- **b.** Déterminer un réel α_k tel que $t \mapsto \alpha_k t e^{2t}$ soit une solution particulière de (E_k)
- c. En déduire toutes les solutions de (E_k)
- 4. Résoudre le système différentiel linéaire (\mathcal{S})
- **5.** Déterminer la solution vérifiant x(0) = 0, y(0) = 1 et z(0) = 1

Exercice 7 - système abordé en informatique

On considère le système différentiel suivant :

$$(\mathscr{S}): \qquad \forall t \in \mathbb{R} \quad \begin{cases} x'(t) &= 3x(t) - y(t) + z(t) \\ y'(t) &= 3x(t) - 2y(t) + 2z(t) \\ z'(t) &= 3x(t) + y(t) - z(t) \end{cases}$$

On notera
$$X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$
 pour tout $t \in \mathbb{R}$

- 1. Montrer que $Sp(A) = \{-3, 0, 3\}$
- **2.** Déterminer une matrice P inversible et une matrice D diagonale telles que : la dernière ligne de P est $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ et les éléments diagonaux de D sont rangés dans l'ordre croissant.
- 3. Résoudre (\mathcal{S})

On écrira X(t) sous la forme :

$$X(t) = C_0 e^{r_0 t} U + C_1 e^{r_1 t} V + C_2 e^{r_2 t} W$$

U, V, W étant trois vecteurs colonnes à déterminer, r_0, r_1, r_2 trois réels à déterminer, C_0, C_1, C_2 étant des paramètres (constantes quelconques).

- **4.** Déterminer la solution vérifiant $x(0) = -\frac{1}{3}$, y(0) = -1 et z(0) = 1 et étudier la convergence de cette trajectoire.
- 5. Emettre une conjecture sur la convergence de la trajectoire vérifiant x(0) = -0, 333333, y(0) = -1 et z(0) = 1

4