
Sujets type ESSEC - HEC Sujet n̊ 3 (HEC)

Ce problème a pour objet principal la modélisation d’un processus aléatoire ponctuel (discret)
représenté par une suit de variables aléatoires de Bernoulli. Ce modèle est ensuite approché par
un modèle continu, et dans la dernière partie, on s’intéresse, dans un cas particulier, à l’adéquation
de ce modèle continu au modèle discret initial.
Dans tout le problème, λ désigne un nombre réel de l’intervalle ouvert ]0, 1[

Partie I : Modèle discret

On suppose donnée une suite (Xn)n∈N de variables aléatoires de Bernoulli, définies sur un espace
probabilisé (Ω,A, P ). Pour tout n de N, on note pn le paramètre de la variable aléatoire Xn

On suppose que p0 appartient à l’intervalle ouvert ]0, 1[ et que pour tout n de N, on a les probabilités
conditionnelles suivantes :

P(Xn=1)(Xn+1 = 1) = P (Xn = 1) = pn et P(Xn=0)(Xn+1 = 1) = λP (Xn = 1) = λpn

[On rappelle que la probabilité conditionnelle PA(B) peut aussi se noter P (B/A)]

1. a. Montrer que pour tout entier n de N, on a : pn+1 = (1− λ)p2
n
+ λpn

b. En déduire que pour tout entier n de N, on a : 0 < pn < 1

2. a. Montrer que la suite (pn)n∈N est convergente et déterminer sa limite.

b. On pose a = (1− λ)p0 + λ. Etablir, pour tout n de N, l’inégalité : pn 6 an

En déduire que la série de terme général pn est convergente.

3. Pour tout n de N , on définit la variable aléatoire Yn par : Yn =
n

∑

k=0

Xk

et on note E(Yn) son espérance.

a. Justifier l’existence de la limite L de la suite (E(Yn))n∈N

4. a. Exprimer, pour tout n de N, la covariance Cov(Xn, Xn+1) de Xn et Xn+1 en fonction de
pn et pn+1

Les variables Xn et Xn+1 sont-elles indépendantes ?

b. Montrer que lim
n→∞

(

pn+1

pn

)

= λ

c. Pour tout n de N, on note rn le coefficient de corrélation linéaire entre Xn et Xn+1 :

rn =
Cov(Xn, Xn+1)

√

V (Xn)V (Xn+1)
où V désigne la variance.

Exprimer rn en fonction de pn et pn+1

Montrer que lorsque n tend vers +∞, rn est équivalent à
1− λ√

λ
pn
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Partie II : Simulation informatique

On importe sous Python les bibliothèques numpy et numpy.random par les commandes :

import numpy as np

import numpy.random as rd

On rappelle que la commande rd.binomial(n, p) renvoie une simulation de la loi binomiale de
paramètres n et p

1. On considère la fonction suivante :

def simulation(N, p0 , mu):

p=p0; x=rd.binomial(1, p); y=x

for i in range(N):

q=p;

if x==0:

q=mu*p

x=rd.binomial(1,q)

y+=x

p=p*((1-mu)*p+mu)

return y

Expliquer ce que renvoie cette fonction.

2. On exécute les lignes de commandes suivantes :

T=np.zeros (201)

for i in range (10000):

y=simulation(200, 0.25, 0.7)

T[y] +=1

T=T/10000;

Que contient le tableau T après la ligne 5 et quelle loi de probabilité approche-t-il ? Justifier la
réponse.
Compléter le script pour calculer une valeur approchée de l’espérance de cette loi.
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Partie III : Modèle continu

Soit ℓ tel que 0 < ℓ < 1 et soit T un réel strictement positif. Pour tout t de [0, T ], on définit une
variable aléatoire X(t) sur un espace probabilisé (Ω,A, P ) qui suit une loi de Bernoulli de paramètre
p(t), c’est à dire que : p(t) = P (X(t) = 1) On suppose que la fonction p est définie et dérivable
sur [0, T ], de dérivée p′, et vérifie la relation :

∀t ∈ [0, T ] p′(t) = (1− ℓ)p(t)(p(t)− 1)

On note p(0) = p0 et on suppose que p0 appartient à l’intervalle ouvert ]0, 1[

1. Soit f la fonction définie sur [0, T ] par f(t) = p(t) × e(1−ℓ)t. Montrer que f est croissante sur
[0, T ] et en déduire que la fonction p ne s’annule pas sur [0, T ]

2. a. Soit g la fonction définie sur [0, T ] par : g(t) =
e−(1−ℓ)t

p(t)
Exprimer g′(t) en fonction de ℓ et t et en déduire qu’il existe une constante k telle que,
pour tout t de [0, T ], g(t) = k + e(ℓ−1)t

b. Montrer que, pour tout t de [0, T ], on a : p(t) =
p0

p0 + (1− p0)e(1−ℓ)t

c. Dresser le tableau de variations de p sur [0, T ]. Soit (C) la courbe représentative de p dans
le plan rapporté à un repère orthogonal. A quelle condition, portant sur p0, la courbe (C)
présente-t-elle un point d’inflexion ? Quelles sont alors les coordonnées de ce point ?

3. Pour tout n ∈ N
∗, on note δ =

T

n
et pour tout k ∈ [[0, n]], tk = kδ

Pour tout n ∈ N
∗, on définit la variable aléatoire Zn par : Zn =

n
∑

k=0

X(tk), d’espérance E(Zn)

a. Montrer que la suite

(

E(Zn)

n

)

n∈N∗

est convergente et de limite
1

T

∫

T

0

p(t) dt

Cette limite sera notée m(T ) dans la suite de cette partie.

b. Justifier la validité du changement de variable u = e(1−ℓ)t dans l’intégrale

∫

T

0

p(t) dt et

en déduire que l’on a :

m(T ) =
1

(1− ℓ)T

∫

e(1−ℓ)T

1

(

1

u
− 1− p0

p0 + (1− p0)u

)

du

c. En déduire une expression de m(T ) en fonction de p0, ℓ et T et montrer que , lorsque T

tend vers +∞, p0 et ℓ étant fixés, m(T ) est équivalent à − ln(1− p0)

(1− ℓ)T

3



Partie IV : Retour au modèle discret

Soit n un entier naturel non fixé.

Avec les notations des parties I et III, on suppose que p0 =
1

3
, ℓ =

1

2
et T = 2n(1− λ)

1. Montrer que la fonction p définie dans la partie III est deux fois dérivable sur [0, T ], et montrer

que pour tout t de [0, T ] : p′′(t) =
1

4
(2p(t)− 1)p(t)(p(t)− 1)

où p′′ désigne la dérivée seconde de p

2. On rappelle que pour tout k de [[0, n]], tk = kδ = k
T

n
et que pk a été défini dans la partie I.

Pour tout k de [[0, n]], on pose εk = p(tk)− pk

a. Etablir, pour tout k de [[0, n− 1]], l’inégalité suivante : |p(tk+1)− p(tk)− δp′(tk)| 6
δ2

8
b. Etablir, pour tout k de [[0, n− 1]], l’égalité :

p(tk) + δp′(tk)− pk+1 = εk[1− (1− λ)(1− p(tk)− pk)]

c. En déduire, pour tout k de [[0, n− 1]], l’inégalité suivante : |εk+1| 6
δ2

8
+

1

3
(λ+ 2)|εk|

d. Etablir, pour tout k de [[0, n]], l’inégalité : |εk| 6 6(1− λ)

3. Pour tout réel α tel que α > 18(1− λ), on pose : N(α) =
1

1− λ
ln

(

α

12(1− λ)
− 1

2

)

a. Vérifier que pour tout réel α > 18(1− λ), on a N(α) > 0

b. Montrer que si n 6 N(α), alors pour tout k de [[0, n]], on a :

∣

∣

∣

∣

p(tk)− pk
p(tk)

∣

∣

∣

∣

6 α

c. Montrer que, pour α fixé, lim
λ→1

N(α) = +∞
d. Conclure sur la qualité de l’approximation du modèle discret par le modèle continu, lorsque

λ se ≪ rapproche ≫ de 1
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