
ECG 2 - maths appli. Chapitre 10 - variables aléatoires à densité Janvier 2026

Objectifs d’apprentissage - A la fin de ce chapitre, je sais :
• justifier qu’une variable aléatoire est à densité à l’aide de sa fonction de répartition �

• montrer qu’une fonction est une densité de probabilité et déterminer la fonction de répartition
associée �

• montrer l’existence et calculer l’espérance et la variance de variables aléatoires à densité �

• reconnaitre ou utiliser les lois usuelles à l’aide des formules définissant leur fonction de répartion
ou leur densité �

• appliquer les propriétés habituelles des variables aléatoires dans le cas des variables à densité
�

• effectuer des transformations sur des variables aléatoires à densité à l’aide de la fonction de
répartition �

Dans tout le chapitre (Ω,A , P ) désigne un espace probabilisé : Ω est l’univers des issues d’une
expérience et A l’ensemble des événements.

1 Rappels et introduction

Rappel n̊ 1 : on dit que X est une variable aléatoire réelle définie sur (Ω,A ) si X est une application
de Ω dans R telle que pour tout élément x de R, {ω ∈ Ω, X(ω) 6 x} ∈ A

L’objectif de cette définition est de pouvoir parler de P (X 6 x) (puis P (X = x) pour les variables
discrètes) et il faut donc que [X 6 x] soit un événement.

Rappel n̊ 2 : la fonction de répartition d’une variable aléatoire X est la fonction : x 7→ P (X 6 x)
définie sur R, on la note généralement FX ou F , et la donnée de la fonction de répartition caractérise
la loi de la variable aléatoire.
La fonction de répartition vérifie toujours les propriétés
ci-contre (même si elle n’est pas continue dans le cas des
variables discrètes) :

• FX est croissante sur R
• FX(x) −−−−→

x→−∞

0

• FX(x) −−−−→
x→+∞

1

Pourquoi des variables à densité ?

Il s’agit de modéliser des situations où les valeurs possibles pour la variable aléatoire sont ≪ conti-
nues ≫ (elles ne sont pas discrètes). Donc, contrairement aux variables aléatoires discrètes, on ne
cherchera pas ici à déterminer des probabilités du type P (X = k) (où k ∈ N), mais plutôt la pro-
babilité que la variable aléatoire se situe dans un intervalle de valeurs, par exemple P (X 6 x) ou
P (a 6 X 6 b) d’où l’usage systématique de la fonction de répartition dans ce chapitre.
D’ailleurs dans le cas des variables à densité, nous verrons que pour tout réel x, P (X = x) = 0

2 Premières définitions et propriétés

Définitions et propriétés Exemples

Définitions : soit X une variable aléatoire. On dit
que X est une variable aléatoire à densité si
sa fonction de répartition est

• continue sur R

• de classe C
1 sur R sauf éventuellement en un

nombre fini de points.

Exemple : si X est une variable aléatoire dont la
fonction de répartition est

F : x 7→











0 si x < 0
x si 0 6 x < 1
1 si 1 6 x

alors F est C
1 sur ]−∞, 0[, [0, 1[

et [1,+∞[ et continue en 0 et 1
donc X est une variable à densité.
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Dans la pratique, si on doit montrer qu’une variable aléatoire dont on connait la fonction de répartition
(ou la donnée de P (X 6 x)) est à densité, il suffit de montrer que cette fonction est continue sur R
et C

1 sauf en un nombre fini de points.

Définition : soitX une variable à densité et FX sa
fonction de répartition. Toute fonction f définie
sur R, positive, cöıncidant avec F ′

X sauf en un
nombre fini de points est appelée densité de
probabilité associée à X

Propriétés : on a alors

• FX est une primitive de f sur tout intervalle
où f est continue

• toute densité f d’une variable à densité X est
continue sur R sauf en un nombre fini de points

• la fonction f définie sur R et valant
f(x) = F ′

X(x) aux points où FX est C
1 est une

densité de probabilité associée à X

Remarque : la fonction densité de probabilité
illustre la probabilité de la variable aléatoire X

(voir les courbes plus bas). Généralement les va-
leurs de f seront ≪ localisées ≫ sur un intervalle
qui correspond à l’intervalle des valeurs les plus
probables pourX , là où il y a le plus de ≪ densité
de probabilité ≫.

Exemple : avec l’exemple précédent

f définie par x 7→











0 si x < 0
1 si 0 6 x < 1
0 si 1 6 x

est une densité de probabilité associée à X

B une densité de probabilité n’est pas unique pour une variable aléatoire, on peut même en définir
une infinité (avec des points de discontinuités).

Propriété : soit X une variable à densité, f une
densité de probabilité associée à X

si f admet une limite finie à gauche et à droite
en tout point, alors :

∀x ∈ R, FX(x) = P (X 6 x) =

∫ x

−∞

f(t)dt

et en particulier :

∫ +∞

−∞

f(t)dt = 1 (= lim
x→+∞

FX(x))

F ′

X(x) = f(x) aux points x où f est continue.

Remarque : cette propriété signifie que la donnée
d’une densité de probabilité, caractérise la loi
d’une variable à densité.

Exemple : avec l’exemple précédent

si x < 0 alors f(t) = 0 pour t ∈]−∞, x]

donc

∫ x

−∞

f(t)dt = 0

si x ∈ [0, 1] alors f(t) = t pour t ∈ [0, x]

donc

∫ x

−∞

f(t)dt = 0 +

∫ x

0

1dt = x

de même si x > 1,

∫ x

−∞

f(t)dt = 0 + 1 + 0 = 1

on retrouve donc la fonction de répartition

Remarque : avec l’exemple ci-dessus, on voit que nous avons calculé l’intégrale d’une fonction non
continue (ce que nous n’avons pas défini), ce qui sera fréquent dans ce chapitre. Dans la pratique,
cela ne posera pas de problème car la fonction de répartition sera toujours continue.

Propriété - conditions suffisantes pour qu’une fonction soit une densité :

soit f une fonction définie sur R vérifiant :

• f est positive sur R

• f est continue sur R sauf en un nombre fini de points,

•
∫ +∞

−∞

f(t)dt converge et vaut 1

alors il existe une variable aléatoire X à densité admettant f pour densité.
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Remarques : ces conditions permettent de vérifier les propriétés caractéristiques d’une fonction de

répartition, f ≪ presque continue ≫ permet de définir une fonction F ≪ presque C
1

≫ vérifiant F ′ = f

≪ presque partout ≫. De plus f positive ⇒ F croissante et enfin

∫ +∞

−∞

f(t)dt = 1 ⇒ lim
x→+∞

F (x) = 1

Dans la pratique, si on commence par nous donner un f , on montrera généralement que la fonction
vérifie ces conditions puis on déterminera la fonction de répartition.

Corollaires : si une fonction f vérifie les condi-
tions de la propriété précédente et admet une
limite finie à gauche et à droite de ses éventuels
points de discontinuité, avec X la variable
aléatoire associée, alors

• ∀x ∈ R, FX(x) = P (X 6 x) =

∫ x

−∞

f(t)dt

• pour a 6 b, P (a 6 X 6 b) =

∫ b

a

f

et P (X > b) =

∫ +∞

b

f

• ∀x ∈ R, P (X = x) = 0

• P (X 6 x) = P (X < x)

donc P (X ∈ [a, b]) = P (X ∈]a, b[), . . .

≪ Démonstrations ≫ : (presque toutes)

• découle des deux propriétés précédentes (f est
alors une densité et admet des limites finies en
tout point)

• X 6 b = [X 6 a] ∪ [a < X 6 b] donc (par in-
comp.) P (X 6 b) = P (X 6 a)+P (a < x 6 b)

i.e.

∫ b

−∞

f =

∫ a

−∞

f + P (a 6 X 6 b)

d’où le résultat car d’après la relation de

Chasles :

∫ b

−∞

f =

∫ a

−∞

f +

∫ b

a

f

• pour tout x ∈ R et α > 0
[X = x] ⊂ [x− α < X 6 x]
donc 0 6 P (X = x) 6 P (x− α < X 6 x)
i.e. 0 6 P (X = x) 6 FX(x)− FX(x− α)
d’où le résultat quand α → 0 par continuité
de FX

• découlent du résultat précédent, par exemple
avec (X 6 x) = (X < x) ∪ (X = x) puis par
incompatibilité

3 Moments d’une variable aléatoire à densité

Définitions :

• soit X une variable aléatoire à densité de den-
sité f , on dit que X admet une espérance si
∫ +∞

−∞

tf(t)dt converge absolument ;

et dans ce cas :

E(X) =

∫ +∞

−∞

tf(t)dt

• on dit qu’une variable aléatoire (à densité) est
centrée si E(X) = 0

• on dit que X admet un moment d’ordre

r (r ∈ {1; 2}) si

∫ +∞

−∞

trf(t)dt converge absolu-

ment (c’est alors la valeur du moment)

Exemples :

• avec l’exemple précédent, comme la densité
choisie est nulle en dehors de [0, 1], X admet une

espérance et E(X) =

∫ 1

0

tdt =
1

2
• la variable aléatoire associée à la densité

t 7→
{

0 si t < 1
1
t2

si t > 1

n’admet pas d’espérance car
∫ A

1

tf(t)dt =

∫ A

1

1

t
dt qui diverge

Remarque : l’espérance, définie ainsi, cherche toujours à illustrer la notion de moyenne. On doit donc
trouver une valeur proche des abscisses des ≪ pics ≫ de la fonction densité.
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Théorème de transfert : soit X une variable
aléatoire à densité, de densité fX ,
alors Y = g(X) admet une espérance si et seule-

ment si

∫ +∞

−∞

g(t)fX(t)dt converge absolument,

et dans ce cas :

E(g(X)) =

∫ +∞

−∞

g(t)fX(t)dt

Exemple : toujours avec l’exemple précédent,

on pose g(x) = x2 alors E(g(X)) converge car f
est nulle en dehors de [0, 1] et

E(g(X)) =

∫ +∞

−∞

g(t)fX(t)dt =

∫ 1

0

g(t)fX(t)dt

i.e. E(X2) =

∫ 1

0

t2 × 1dt =

[

t3

3

]1

0

=
1

3

Définition : soit une variable aléatoire à densité
X de densité f admettant une espérance.
Sous réserve de convergence de l’intégrale,
• en notant m = E(X), la variance de X est

V (X) = E((X − E(X))2) =

∫ +∞

−∞

(t−m)2f(t)dt

• on dit que X est centrée réduite si E(X) = 0
et V (X) = 1

• σ(X) =
√

V (X) est appelé l’écart-type de
X

Exemple : toujours avec le même

avec la définition, la valeur de E(X) et car f

nulle en dehors de [0, 1], X admet une variance
et

V (X) =

∫ 1

0

(

t− 1

2

)2

× 1dt

=

[

1

3

(

t− 1

2

)3
]1

0

=
1

3
×
(

1

8
+

1

8

)

=
1

12

Propriété - formule de Kœnig-Huygens :

une variable à densité X admet une variance si,
et seulement si X admet un moment d’ordre 2,

et dans ce cas : V (X) = E(X2)−E(X)2

Exemple : toujours avec le même

d’après les résultats précédents (th. de trans-
fert), X admet un moment d’ordre 2

donc V (X) =
1

3
−
(

1

2

)2

=
1

12

4 Généralisation des propriétés

Cette section généralise des notions (définitions ou propriétés) qui ont été vues avec les variables
aléatoires discrètes. Pour l’indépendance, c’est une définition plus large (nous avions vu que c’était
équivalent à la définition donnée pour les variables aléatoires discrètes), pour le reste, cela permet
d’étendre des propriétés au cas des variables à densité.

4.1 Indépendance de variables aléatoires réelles

Définition : soit X et Y sont deux variables aléatoires réelles,

on dit que X et Y sont indépendantes si, pour tous intervalles I et J de R,

P ([X ∈ I] ∩ [Y ∈ J ]) = P ([X ∈ I])P ([Y ∈ J ])

Définition - cas de n variables aléatoires :

on dit que n variables aléatoires réelles X1, . . . , Xn sont mutuellement indépendantes si, pour
tous intervalles I1, . . . In,

P ([X1 ∈ I1] ∩ · · · ∩ [Xn ∈ In]) = P

(

n
⋂

i=1

[Xi ∈ Ii]

)

=

n
∏

i=1

P (Xi ∈ Ii)

Définition - cas d’une suite de variables aléatoires :

si (Xi)i∈N est une suite de variables aléatoires, on dit que les variables sont (mutuellement)
indépendantes si X0, . . .Xn le sont, pour tout n ∈ N
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Propriété - lemme des coalitions :

si X1, . . . , Xn sont n des variables aléatoires indépendantes, toute variable aléatoire fonction de
X1, . . . , Xp (p < n) est indépendante de toute variable aléatoire fonction de Xp+1, . . . , Xn

4.2 Propriétés de l’espérance

Dans ce paragraphe, X et Y désignent des variables aléatoires réelles quelconques.

Propriété - espérance d’une somme et linéarité : si X1, . . . , Xn sont n variables aléatoires réelles

admettant une espérance, alors

n
∑

i=1

Xi admet une espérance et E

(

n
∑

i=1

Xi

)

=

n
∑

i=1

E(Xi)

pour α, β réels, si X et Y admettent une espérance, alors αX + βY admet une espérance et

E(αX + βY ) = αE(X) + βE(Y ) et en particulier E(αX + β) = αE(X) + β

Propriété - croissance et positivité :

si X et Y admettent des espérances et si P (X 6 Y ) = 1, alors E(X) 6 E(Y )

en particulier, si X > 0, alors E(X) > 0

Exemple : si U et V sont deux variables aléatoires et X = min(U, V ) et Y = max(U, V ) alors ≪ à
coup sûr ≫ X 6 Y et donc si existence E(X) 6 E(Y )

Propriété - espérance d’un produit :

si X1, . . .Xn sont n variables aléatoires réelles indépendantes admettant une espérance, alors la

variable aléatoire
n
∏

i=1

Xi admet une espérance et E

(

n
∏

i=1

Xi

)

=
n
∏

i=1

E(Xi)

en particulier si X et Y sont indépendantes : E(XY ) = E(X)E(Y )

4.3 Propriétés de la variance

Dans ce paragraphe, X et Y désignent des variables aléatoires réelles quelconques.

Propriétés élémentaires : si X admet une variance,

• V (X) > 0 et V (X) = 0 ⇔ P (X = a) = 1 où a ∈ R

• pour α, β réels, alors αX + β admet une variance et : V (αX + β) = α2V (X)

en particulier, V (X + β) = V (X)

Propriété - variance d’une somme de variables aléatoires indépendantes :

si X1, . . .Xn sont n variables aléatoires réelles indépendantes admettant une variance, alors la

variable
n
∑

i=1

Xi admet une variance et V

(

n
∑

i=1

Xi

)

=
n
∑

i=1

V (Xi)

en particulier si X et Y sont indépendantes, V (X + Y ) = V (X) + V (Y )
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5 Lois usuelles

5.1 Loi uniforme U([a, b])
a, b réels, a < b. Remarque : U([a, b]) = U(]a, b[)
• Densité :

L’idée de la loi uniforme est que la densité est constante sur [a, b], nulle en dehors de [a, b]

La valeur de la constante est obtenue avec la relation

∫ +∞

−∞

f(t)dt =

∫ b

a

f(t)dt = 1

f(x) =







1

b− a
si x ∈ [a, b]

0 sinon

a b

1

b− a

y = 0

• Fonction de répartition

F (x) =



















0 si x < a
x− a

b− a
si x ∈ [a, b]

1 si x > b

a b

1

y = 0

Remarque : F est ≪ affine par morceaux ≫ et F (a) = 0 et F (b) = 1

• Espérance et variance : si X →֒ U([a, b]), E(X) =
a+ b

2
V (X) =

(b− a)2

12

5.2 Loi exponentielle de paramètre λ > 0 : E(λ)
• Densité :

f(x) =







0 si x < 0

λe−λx si x > 0

λ

• Fonction de répartition

F (x) =







0 si x < 0

1− e−λx si x > 0

1

Remarque : si X →֒ E(λ), ∀t > 0, P (X > t) = e−λt = 1− P (X 6 t) = 1− F (t)

• Espérance et variance : si X →֒ E(λ), E(X) =
1

λ
V (X) =

1

λ2
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• Propriété d’absence de mémoire (on parle aussi de durée de vie sans vieilissement) :

si X →֒ E(λ), ∀t > 0, ∀x > 0, P(X>x)(X > x+ t) = P (X > t)

5.3 Loi normale centrée réduite N (0, 1)

• Densité :

f(x) =
1√
2π

exp

(

−x2

2

)

1√
2π

• Fonction de répartition :

Φ(x) =
1√
2π

∫ x

−∞

e−
t2

2 dt

1

Remarque :

∫ +∞

−∞

e−x2

dx =
√
π et

∫ +∞

−∞

e−
x2

2 dx =
√
2π

• Espérance et variance : si X →֒ N (0, 1), E(X) = 0 V (X) = 1

La loi N (0, 1) est donc bien centrée et réduite.

• Relations remarquables : Φ(0) =
1

2
∀x ∈ R, Φ(−x) = 1− Φ(x)

Cela traduit la symétrie de la répartition des valeurs.

5.4 Loi normale N (µ, σ2), µ ∈ R, σ > 0

Cette loi vise à représenter des répartitions ≪ normales ≫ ou encore ≪ naturelles ≫ de valeurs.

• X →֒ N (µ, σ2) si et seulement si X∗ =
X − µ

σ
→֒ N (0, 1)

où E(X) = µ V (X) = σ2 σ(X) = σ

• Densité :

fµ,σ(x) =
1

σ
√
2π

exp

(

−(x− µ)2

2σ2

)

1

σ
√
2π

µ

• Fonction de répartition :

Φµ,σ(x) =

∫ x

−∞

fµ,σ(t)dt

1

µ
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Remarques :

• X − µ

σ
est toujours une variable centrée réduite car par propriétés :

E

(

X − µ

σ

)

=
1

σ
(E(X)− µ) = 0 et V

(

X − µ

σ

)

=
1

σ2
V (X − µ) =

1

σ2
V (X) = 1

• le lien entre les fonctions de répartitions des loi normales N (0, 1) et N (µ, σ) s’obtient par change-
ment de variables dans l’intégrale (cf. transferts plus bas).

• pour la loi normale centrée et réduite, on peut être amené à utiliser des valeurs de Φ(x) ; on pourra
alors utiliser la table donnée en annexe.

Propriété : une somme de variables aléatoires
indépendantes suivant des lois normales suit
aussi une loi normale.

Remarque : on obtient alors l’espérance par
linéarité, puis la variance grâce à la propriété
dans le cas d’indépendance.

6 Transferts ou transformées de variables aléatoires

6.1 Cas général

On cherchera toujours à se ramener à la variable connue : si on note Y la nouvelle variable et X la
variable ≪ connue ≫

pour y ∈ R, Y 6 y ⇔ · · · ⇔ X 6 . . . ou · · · ⇔ · · · 6 X 6 . . . ou · · · ⇔ X > . . .

puis on passera à la fonction de répartition, en veillant aux intervalles de définition, et en utilisant
notamment les propriétés :

P (X > x) = 1− FX(x) et P (a 6 X 6 b) = FX(b)− FX(a)

Exemples :

• soit U une variable aléatoire à densité telle que U →֒ U([0, 1]) et on pose Y = −1

λ
ln(1− U)

soit y ∈ R alors (on utilise λ > 0 et la croissance d’exponentielle et ln)

Y 6 y ⇔ −1

λ
ln(1−U) 6 y ⇔ − ln(1−U) 6 λy ⇔ ln(1−U) > −λy ⇔ 1−U > e−λy ⇔ U 6 1−e−λy

donc P (Y 6 y) = P (U 6 1− e−λy) i.e. FY (y) = FU(1− e−λy)
1er cas : y > 0 alors −λy 6 0 donc 0 6 e−λy 6 1 donc 1 > 1− e−λy 6 0
et donc FU(1− e−λy) = 1− e−λy car FU(x) = x si x ∈ [0, 1] i.e. FY (y) = 1− e−λy

2ème cas : y < 0 alors de même 1− e−λy < 0 et donc FU(1− e−λy) = 0 i.e. FY (y) = 0

finalement FY (y) =







0 si y < 0

1− e−λy si y > 0

on retrouve pour Y la fonction de répartition de la loi exponentielle de paramètre λ donc Y →֒ E(λ)

• on définit maintenant Z =
1

Y
, alors Z > 0 (i.e. P (Z 6 z) = 0 pour z 6 0) puisque Y →֒ E(λ)

et pour z > 0, Z 6 z ⇔ 1

Y
6 z ⇔ Y >

1

z
par décroissance de la fonction inverse sur ]0,+∞[

donc P (Z 6 z) = P

(

Y >
1

z

)

= 1− P

(

Y 6
1

z

)

i.e. FZ(z) = 1− FY

(

1

z

)

= 1−
(

1− e−
λ
z

)

= e−
λ
z

finalement FZ(z) =







0 si z 6 0

e−
λ
z si z > 0
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6.2 Transformée d’une loi uniforme

Propriété : si (a, b) ∈ R
2 et a < b,

X →֒ U([0, 1]) ⇔ a+ (b− a)X →֒ U([a, b])

Exemple :

si X →֒ U([0, 1]) alors 2X →֒ U([0, 2])

Démonstration :

On pour Y = a+ (b− a)X , alors pour y ∈ R, Y 6 y ⇔ a+ (b− a)X 6 y ⇔ X 6
1

b− a
(y − a)

donc FY (y) = FX

(

1

b− a
(y − a)

)

et donc si X →֒ U([0, 1]) alors

1er cas : si y < a alors
1

b− a
(y − a) < 0 donc FX

(

y − a

b− a

)

= 0 et donc FY (y) = 0

2ème cas : y ∈ [a, b] alors 0 6 y − a 6 b− a donc 0 6
y − a

b− a
6 1

donc FX

(

y − a

b− a

)

=
y − a

b− a
et donc FY (y) =

y − a

b− a

3ème cas : y > b alors
y − a

b− a
< 1 donc FX

(

y − a

b− a

)

= 1 et donc FY (y) = 1

finalement FY (y) =



















0 si y < a
y − a

b− a
si y ∈ [a, b]

1 si y > b

donc Y →֒ U([a, b])

et on montre de manière analogue la réciproque

6.3 Transformée d’une loi normale

Propriété : si a ∈ R, a 6= 0 et b ∈ R,

X →֒ N (µ, σ2) ⇔ aX + b →֒ N (aµ+ b, a2σ2)

Remarque : on peut retrouver les paramètres de
la nouvelle loi avec les propriétés de la variance
et de l’espérance

Exemple : avec a =
1

σ
et b = −µ

σ
on retrouve

X − µ

σ
→֒ N (0, 1)

Démonstration : on suppose a > 0 ici pour simplifier le changement de variable

soit X une variable aléatoire telle que X →֒ N (µ, σ2) et Y = aX + b

alors pour y ∈ R, Y 6 y ⇔ aX + b 6 y ⇔ X 6
y − b

a

donc FY (y) = FX

(

y − b

a

)

=
1

σ
√
2π

∫
y−b

a

−∞

exp

(

−(t− µ)2

2σ2

)

dt

donc par changement de variable u = at + b ⇔ t =
u− b

a
alors t → −∞ ⇒ u → −∞ (car a > 0) et

t =
y − b

a
⇒ u = y et enfin dt → 1

a
du

d’où FY (y) =
1

σ
√
2π

∫ y

−∞

exp

(

− 1

2σ2

(

u− b

a
− µ

)2
)

1

a
du =

1

aσ
√
2π

∫ y

−∞

exp

(

−(u− b− aµ)2

2(aσ)2

)

du

on reconnait la fonction de répartition de la loi normale N (aµ+ b, a2σ2) donc Y →֒ N (aµ+ b, a2σ2)

on montre de manière analogue la réciproque
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Annexe : table des valeurs de la fonction de répartition de la loi N (0, 1)

La table ci-dessous comporte les valeurs approchées de la fonction de répartition de la loi normale
centrée réduite, c’est-à-dire les valeurs de :

Φ (x) =
1√
2π

∫ x

−∞

exp

(

−t2

2

)

dt

par exemple Φ (0, 67) ≈ 0, 7486 i.e. P (X 6 0, 67) ≈ 0, 7486

x 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09

0,0 0,5000 0,5040 0,5080 0,5120 0,5160 0,5199 0,5239 0,5279 0,5319 0,5359

0,1 0,5398 0,5438 0,5478 0,5517 0,5557 0,5596 0,5636 0,5675 0,5714 0,5753

0,2 0,5793 0,5832 0,5871 0,5910 0,5948 0,5987 0,6026 0,6064 0,6103 0,6141

0,3 0,6179 0,6217 0,6255 0,6293 0,6331 0,6368 0,6406 0,6443 0,6480 0,6517

0,4 0,6554 0,6591 0,6628 0,6664 0,6700 0,6736 0,6772 0,6808 0,6844 0,6879

0,5 0,6915 0,6950 0,6985 0,7019 0,7054 0,7088 0,7123 0,7157 0,7190 0,7224

0,6 0,7257 0,7291 0,7324 0,7357 0,7389 0,7422 0,7454 0,7486 0,7517 0,7549

0,7 0,758 0,7611 0,7642 0,7673 0,7704 0,7734 0,7764 0,7794 0,7823 0,7852

0,8 0,7881 0,7910 0,7939 0,7967 0,7995 0,8023 0,8051 0,8078 0,8106 0,8133

0,9 0,8159 0,8186 0,8212 0,8238 0,8264 0,8289 0,8315 0,8340 0,8365 0,8389

1,0 0,8413 0,8438 0,8461 0,8485 0,8508 0,8531 0,8554 0,8577 0,8599 0,8621

1,1 0,8643 0,8665 0,8686 0,8708 0,8729 0,8749 0,8770 0,8790 0,8810 0,8830

1,2 0,8849 0,8869 0,8888 0,8907 0,8925 0,8944 0,8962 0,8980 0,8997 0,9015

1,3 0,9032 0,9049 0,9066 0,9082 0,9099 0,9115 0,9131 0,9147 0,9162 0,9177

1,4 0,9192 0,9207 0,9222 0,9236 0,9251 0,9265 0,9279 0,9292 0,9306 0,9319

1,5 0,9332 0,9345 0,9357 0,9370 0,9382 0,9394 0,9406 0,9418 0,9429 0,9441

1,6 0,9452 0,9463 0,9474 0,9484 0,9495 0,9505 0,9515 0,9525 0,9535 0,9545

1,7 0,9554 0,9564 0,9573 0,9582 0,9591 0,9599 0,9608 0,9616 0,9625 0,9633

1,8 0,9641 0,9649 0,9656 0,9664 0,9671 0,9678 0,9686 0,9693 0,9699 0,9706

1,9 0,9713 0,9719 0,9726 0,9732 0,9738 0,9744 0,975 0,9756 0,9761 0,9767

2,0 0,9772 0,9778 0,9783 0,9788 0,9793 0,9798 0,9803 0,9808 0,9812 0,9817

Remarques :

• on notera les valeurs remarquables : Φ(1, 96) ≈ 0, 975 et Φ(1, 64) ≈ 0, 95
• on ne donne que les valeurs positives car on retrouve les valeurs négatives à l’aide de la relation
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