
Sujets type ESSEC - HEC Sujet n̊ 4 (HEC)

Problème

Toutes les variables aléatoires qui interviennent dans ce problème sont supposées définies sur un es-
pace probabilisé (Ω,A,P). Sous réserve d’existence, on note E (X) et V (X) respectivement l’espérance
et la variance d’une variable aléatoire X , et Cov (X, Y ) la covariance de deux variables aléatoires X
et Y .
Dans les parties I et III, la fonction de répartition et une densité d’une variable aléatoire X à densité
sont notées respectivement FX et fX .
On admet que les formules donnant l’espérance et la variance d’une somme de variables aléatoires
discrètes, ainsi que la définition et les propriétés de la covariance et du coefficient de corrélation
linéaire de deux variables aléatoires discrètes, s’appliquent au cas de variables aléatoires à densité.
Pour n entier supérieur ou égal à 2, on dit que les variables aléatoires à densité X1, X2, ..., Xn sont
indépendantes si pour tout n− uplet (x1, x2, ..., xn) de réels, les événements
[X1 6 x1] , [X2 6 x2] , ..., [Xn 6 xn] sont indépendants.
L’objet du problème est double. D’une part, montrer certaines analogies entre les lois géométriques
et exponentielles, d’autre part mettre en évidence quelques propriétés asymptotiques de variables
aléatoires issues de la loi exponentielle.
La partie II est indépendante de la partie I. La partie III est indépendante de la partie II et largement
indépendante de la partie I.

Partie I. Loi exponentielle

1. a. Rappeler la valeur de

∫ +∞

0

e−tdt. Etablir pour tout n de N
∗ la convergence de l’intégrale

∫ +∞

0

tne−tdt.

On pose alors I0 =

∫ +∞

0

e−tdt et,.pour tout n de N
∗ In =

∫ +∞

0

tne−tdt.

b. Soit n un entier de N
∗. A l’aide d’une intégration par parties, établir une relation de

récurrence entre In et In−1. En déduire la valeur de In en fonction de n.

Soit λ un réel strictement positif. Soit X1 et X2 deux variables indépendantes de même loi
exponentielle de paramètre λ (d’espérance 1/λ).
on pose : Y = X1 −X2, T = max (X1, X2) et Z = min (X1, X2).

2. Justifier les relations T + Z = X1 +X2 et T − Z = |X1 −X2| = |Y |.
3. a. Rappeler sans démonstration les valeurs respectives de V (X1) et de P ([X1 6 x]), pour

tout réel x.

b. Calculer E (X1 +X2), V (X1 +X2), E (Y ), V (Y ).

4. Déterminer pour tout réel z, FZ (z) et fZ (z). Reconnâıtre la loi de Z et en déduire E (Z) et
V (Z).

5. a. Montrer que pour tout réel t, on a : FT (t) =





(
1− e−λt

)2

0

si t > 0

si t < 0
. Exprimer pour

tout réel t, fT (t).
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b. Justifier l’existence de E (T ) et V (T ). Montrer que E (T ) =
3

2λ
et V (T ) =

5

4λ2
.

(on pourra utiliser des changements de variables affine).

6. On note r le coefficient de corrélation linéaire de Z et T . Montrer que r = 1/
√
5.

7. a. Préciser Y (Ω) et |Y | (Ω).
b. Déterminer une densité de la variable aléatoire −X2.

c. Montrer que pour tout réel y, l’intégrale

∫ +∞

−∞

fX1 (t) f−X2 (y − t) dt est convergente et

qu’elle vaut
λ

2
e−λ|y|.

(on distinguera les deux cas : y > 0 et y < 0)

d. Etablir que la fonction y 7→ λ

2
e−λ|y| est une densité de probabilité sur R ; on admet que

c’est une densité de la variable aléatoire Y .

e. Déterminer pour tout y réel, f|Y | (y). Reconnâıtre la loi de |Y | = T − Z.

Partie II. Loi géométrique

Soit p un réel de ]0, 1[ et q = 1 − p. Soit X1 et X2 deux variables indépendantes de même loi
géométrique de paramètre p (d’espérance 1/p).
on pose : Y = X1 −X2, T = max (X1, X2) et Z = min (X1, X2). On rappelle que T + Z = X1 +X2

et T − Z = |X1 −X2| = |Y |.

1. a. Rappeler sans démonstration les valeurs respectives de V (X1) et de P ([X1 6 k]), pour
tout k de X1 (Ω).

b. Calculer E (X1 +X2), V (X1 +X2), E (X1 −X2), V (X1 −X2).

c. Etablir la relation : P ([X1 = X2]) =
p

1 + q

2. a. Montrer que Z suit la loi géométrique de paramètre 1 − q2. En déduire E (Z), V (Z) et
E (T ).

b. Soit k un entier de N
∗.Justifier l’égalité : [Z = k] ∪ [T = k] = [X1 = k] ∪ [X2 = k].

En déduire la relation suivante : P (T = k) = 2P (X1 = k)− P (Z = k).

c. Etablir la formule : V (T ) =
q (2q2 + q + 2)

(1− q2)2
.

3. a. Préciser (T − Z) (Ω). Exprimer pour tout j de N∗, l’événement [Z = j]∩ [Z = T ] en fonc-
tion des événements [X1 = j] et [X2 = j]. En déduire pour tout j de N

∗, l’expression de
P ([Z = j] ∩ [Z = T ])

b. Montrer que pour tout couple (j, l) de (N∗)2, on a : P ([Z = j] ∩ [T − Z = l]) = 2p2q2j+l−2

c. Montrer que pour tout k de Z, P ([X1 −X2 = k]) =
pq|k|

1 + q
(on distinguera trois cas :

k = 0, k > 0 et k < 0).

d. En déduire la loi de la variable aléatoire |X1 −X2|.
e. Etablir à l’aide des questions précédentes que les variables Z et T −Z sont indépendantes.

4. a. A l’aide du résultat de la précédente (3.e., calculer Cov (Z, T ). Les variables Z et T
sont-elles indépendantes ?

b. Calculer en fonction de q, le coefficient de corrélation linéaire ρ de Z et T .

c. Déterminer la loi de probabilité du couple (Z, T ).
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d. Déterminer pour tout j de N∗, la loi de probabilité conditionnelle de T sachant l’événement
[Z = j].

e. Soit j un élément de N
∗. On suppose qu’il existe une variable aléatoire Dj à valeur dans

N
∗, dont la loi de probabilité est la loi conditionnelle de T sachant l’événement [Z = j].

Calculer E (Dj).

Partie III. Convergences

Dans les questions 1 à 4, λ désigne un paramètre réel strictement positif, inconnu.
pour n élément de N∗, on considère un n-échantillon (X1, X2, ..., Xn) de variables aléatoires à valeurs
strictement positives, indépendantes, de même loi exponentielle de paramètre λ.

On pose pour tout n de N
∗ : Sn =

n∑

k=1

Xk et Jn = λSn.

1. Calculer pour tout n de N
∗, E (Sn), V (Sn) , E (Jn) et V (Jn).

2. On admet qu’une densité fJn de Jn est donnée par fJn (x) =





e−xxn−1

(n− 1)!

0

si x > 0

si x 6 0
.

a. A l’aide du théorème de transfert, établir pour tout n supérieur ou égal à 3, l’existernce

de E

(
1

Jn

)
et de E

(
1

J2
n

)
, et donner leur valeurs respectives.

b. On pose pour tout n supérieur ou égal à 3 : λ̂n =
n

Sn

. Justifier que λ̂n est un estimateur

de λ. Est-il sans biais ? Calculer la limite, lorsque n tend vers +∞, du risque quadratique
associé à λ̂n en λ.

3. [Cubes] Dans cette question, on veut déterminer un intervalle de confiance du paramètre λ au
risque α. On note Φ la fonction de répartition de la loi normale centrée réduite, et uα le réel

strictement positif tel que Φ (uα) = 1− α

2
.

a. Enoncer le théorème de la limite centrée. En déduire que la variable aléatoire Nn définie

par Nn = λ
Sn√
n
−
√
n converge en loi vers la loi normale centrée réduite.

b. En déduire que pour n assez grand, on a approximativement : P ([−uα 6 Nn 6 uα]) =
1− α.

c. Montrer que pour n assez grand, l’intervalle

[(
1− uα√

n

)
λ̂n,

(
1 +

uα√
n

)
λ̂n

]
est un inter-

valle de confiance de λ au risque α. On note λ0 la réalisation de λ̂n sur le n-échantillon.

4. Avec le n-échantillon (X1, X2, ..., Xn), on construit un nouvel intervalle de confiance de λ au
risque β (β 6= α), tel que la longueur de cet intervalle soit k (k > 1) fois plus petite que celle
obtenue avec le risque α. [Hors-programme maintenant] - mais la question a. est faisable.

a. Justifier l’existence de la fonction réciproque Φ−1 de Φ. Quel est le domaine de définition
de Φ−1 ?

b. Etablir l’égalité β = 2Φ

(
1

k
Φ−1 (α/2)

)
. En déduire que β > α. Ce dernier résultat était-il

prévisible ?

Dans les questions 5 à 7, on suppose que λ = 1.
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5. On pose pour tou n de N
∗ : Tn = max (X1, X2, ..., Xn).

Pour tout n de N
∗, pour tout réel x positif ou nul, on pose :

gn (x) =

∫ x

0

FTn
(t) dt et hn (x) =

∫ x

0

tfTn
(t) dt

a. Exprimer hn (x) en fonction de Fn (x) et gn (x).

b. Déterminer pour tout réel t, l’expression de FTn
(t) en fonction de t.

Etablir pour tout n supérieur ou égal à 2, la relation : gn−1 (x)− gn (x) =
1

n
FTn

(x)

c. En déduire que pour tout n de N
∗, pour tout réel x positif ou nul, l’expression de gn (x)

en fonction de x, FT1 (X) , FT2 (x) , ..., FTn
(x).

d. Montrer que FTn
(x)− 1 est équivalent à −ne−x, lorsque x tend vers +∞.

e. Déduire des questions c) et d) l’existence de E (Tn) et montrer que E (Tn) =
n∑

k=1

1

k
.

6. On veut étudier dans cette question la convergence en loi de la suite de variables aléatoires
(Gn)n>1 définie par : pour tout n de N

∗, Gn = Tn − E (Tn).
On pose pour tout n de N∗ : γn = − lnn+E (Tn) et on admet sans démonstration que la suite
(γn)n>1 est convergente ; on note γ sa limite.

a. Montrer que pour tout x réel et n assez grand, on a : FGn
(x) =

(
1− 1

n
e−(x+γn)

)n

.

b. En déduire que pour tout x réel, on a : lim
n→+∞

FGn
(x) = e−e−(x+γ)

c. Montrer que la fonction FG : R → R définie par FG (x) = e−e−(x+γ)

est la fonction de
répartition d’une variable aléatoire G à densité. Conclure [Cubes].

7. a. SoitX une variable aléatoire à densité de fonction de répartition FX strictement croissante.
Déterminer la loi de la variable alétoire Y définie par Y = FX (X).

b. On suppose qu’on importe les bibliothèques suivantes sous Python :

import numy as np

import numpy.random as rd

Sachant que rd.rand() permet de simuler la loi uniforme sur ]0, 1[, et la valeur de γ est
donnée par la commande : np.euler gamma, écrire une fonction Python d’en-tête def

Gumbel() permettant de simuler la variable aléatoire G.
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