Informatique - TP 11 Statistiques - régression linéaire 2 12 - 16 janvier 2026
Corrigé Code de partage avec Capytale : 645d-9007032

On utilisera les bibliothéques suivantes :
import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Exercice 1 - PIB et population urbaine

On va étudier ici I’évolution de deux variables de 1960 a 2021 en Norvége : le pourcentage de
population urbaine et le PIB par habitant (données issues du World Bank Group), et leur possible
corrélation.

Dans un premier temps, il faut importer le jeu de données. On commence donc par exécuter la
commande suivante :

import pandas as pd
donnees=pd.read_csv(’tpll_norvege.csv’, delimiter=’;’)

1. Représenter le nuage de points des deux variables étudiées (pourcentage de population urbaine
en fonction du PIB par habitant) et commenter le résultat.

Il suffit d’extraire les données des deux colonnes qui nous intéresse et de représenter :

x=donnees[’PIB_capita’]
y=donnees[’Pop_urbaine’]
plt.plot(x,y,’.”)
plt.show ()

Les points ne semblent pas s’aligner, mais font plutot penser a I’allure d’une courbe logarith-
mique.
2. Que fait le programme suivant 7 interpréter le résultat.

np.mean ([(x[i]l-x.mean())*(y[i]-y.mean()) for i in x.index])/(x.std()*y.std()
)

Cov(z,
Il calcule le coefficient de corrélation linéaire r,, = M
SzSy

Le résultat est proche de 0,81, ce que 'on va considérer comme insuffisant pour modéliser la
relation entre x et y par une fonction affine.

3. Représenter le nuage de points (In(z),y)

La commande suivante suffit, car np.log(x) transforme la « colonne » x en la « colonne » de
ses logarithme.

plt.close ()
plt.plot(np.log(x),y,’.?)
plt.show()

On peut aussi définir une nouvelle variable pour y voir plus clair.

x2=[np.log(x[i]) for i in x.index]
plt.plot(x2,y,’.7)
plt.show ()

Les données présentent alors une allure plus rectiligne.
4. Calculer le coefficient de corrélation linéaire de y et In(z)

On reprend le programme de la question 2. en modifiant x en x2 (ou np.log(x))


https://capytale2.ac-paris.fr/web/c/645d-9007032

np.mean ([(x2[i]-x2.mean () ) *(y[i]l-y.mean()) for i in x2.index])/(x2.std()*y.
std ())

On trouve alors une valeur approchée de 0,95 ce que ’on va considérer comme suffisant pour
modéliser une relation entre y et In(x) par une fonction affine.

. Déterminer I’équation de la droite de régression de y en fonction de In(x)

D’apreés les résultats du cours, on cherche les coefficients a et b de la droite t = au + b, ou

Cov(u,t -
a= # et b=t —axw d’ou les commandes :
Su

a=np.mean ([(x2[i]-x2.mean())*(y[i]l-y.mean()) for i in x2.index])/(x2.std()
*%2)
b=y.mean () -a*x2.mean ()

on obtient a ~ 5,87 et b ~ 13,69
. En déduire qu’on peut supposer que la dépendance entre y et z est de la forme y = aln(z) + b

C’est I'équation de la droite de régression linéaire que I’on juge pertinente pour représenter une
relation entre y et In(x) d’aprés la valeur du coefficient de corrélation linéaire.

Pour mieux visualiser le résultat, on peut représenter la droite de régression avec le nuage avec
la commande suivante :

plt.close ()

plt.plot(x2,y,’.7)
plt.plot (x2,a*xx2+b)
plt.show ()

. Représenter le nuage de points initial avec lequel on fera apparaitre la courbe d’équation y =
aln(t) +b

Enfin avec les valeurs de a et b trouvées, on représente a nouveau le nuage de point initial (x,y)
en superposant la courbe y = aln(x) + b

plt.close ()

plt.plot(x,y,’.?)
plt.plot (x,a*x2+b)
plt.show ()

Le résultat semble plutot intéressant avec une « bonne superposition » (visuellement) entre le
nuage de points et la courbe.



