
Sujets type ESSEC - HEC Sujet n̊ 4 (HEC - 2010) Corrigé

Partie I. Loi exponentielle

1. a. La densité d’une loi ε (1) est f (x) = e−x sur R+ et 0 sur R− donc

Conclusion :

∫ +∞

0

e−tdt = 1

On peut le démontrer par récurrence (mais cela est plutôt l’objet de la question suivante)

Astuce : tne−t = tne−t/2e−t/2 avec tne−t/2 = tn/et/2 → 0 quand t → +∞ (tn = o
(
et/2

)
)

donc tne−t = o
(
e−t/2

)

Or

∫ +∞

0

e−t/2dt converge, donc par majoration de fonctions positives,

Conclusion :

∫ +∞

0

tne−tdt converge également

On pose alors I0 =

∫ +∞

0

e−tdt et,.pour tout n de N
∗ In =

∫ +∞

0

tne−tdt.

b. Soit M > 0 alors

∫ M

0

tne−tdt = · · ·

Soient u (t) = tn : u′ (t) = ntn−1 et v′ (t) = e−t : v (t) = −e−t avec u et v C1 sur R∫ M

0

tne−tdt =
[
−tne−t

]M
0

−
∫ M

0

−ntn−1e−tdt = −Mne−M + n

∫ M

0

tn−1e−tdt

→ nIn−1 quand M → +∞

Conclusion : Pour tout n ∈ N
∗ : In = nIn−1

Et comme de plus I0 = 1, on reconnâıt alors la suite factorielle

Conclusion : pour tout n ∈ N : In = n!

Soit λ un réel strictement positif. Soit X1 et X2 deux variables indépendantes de même loi exponen-
tielle de paramètre λ (d’espérance 1/λ).
on pose : Y = X1 −X2, T = max (X1, X2) et Z = min (X1, X2).

2. Si X1 > X2 alors Y = X1 −X2, T = X1 et Z = X2 donc |X1 −X2| = X1 −X2

et doncT + Z = X1 +X2 et T − Z = |X1 −X2| = |Y |.
Et de même si X1 6 X2 où |X1 −X2| = X2 −X1

3. a. Comme X1 →֒ ε (λ) on a V (X1) = 1/λ2 et P ([X1 6 x]) =





0 si x < 0

1− eλx si x > 0

b. On a donc E (X1 +X2) = E (X1) + E (X1) = 2/λ
et V (X1 +X2) = V (X1) + V (X2) = 2/λ2 par indépendance.

et de même, E (Y ) = E (X1 −X2) = 0 et V (Y ) = V (X1) + (−1)2 V (X2) = 2/λ2.

4. FZ est la fonction de répartition de Z.
Pour tout z ∈ R, (Z 6 z) = (min (X1, X2) 6 z) n’est pas simple à traduire.
(Z > z) = (min (X1, X2) > z) = (X1 > z ∩X2 > z) indépendants donc
FZ (z) = P (Z 6 z) = 1− P (min (X1, X2) > z) = 1− P (X1 6 z) P (X2 6 z) par indépendance
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donc FZ (z) =





1−
(
e−λz

)2
si z > 0

0 si z < 0

et comme 1−
(
e−λz

)2
= 1− e−2λz, on reconnâıt la fonction de répartition de ε (2λ)

Conclusion : Z →֒ ε (2λ) , E (Z) =
1

2λ
et V (Z) =

1

4λ2

5. a. (T 6 t) = (max (X1, X2) 6 t) = (X1 6 t ∩X2 6 t) indépendants donc

FT (t) = P (X1 6 t) P (X2 6 t) par indépendance

=





(
1− e−λt

)2
si t > 0

0 si z < 0

La fonction FT est continue sur ]−∞, 0[ (fonction nulle) et sur [0,+∞[

En 0− : FT (t) = 0 → 0 = FT (0) donc FT est continue sur R et C1 sur R
∗ donc T est à

densité et une densité de T est fT (t) =





2λe−λt
(
1− e−λt

)
si t > 0

0 si z < 0

b. On a

∫ M

0

tfT (t) dt =

∫ M

0

t2λe−λt
(
1− e−λt

)
dt

=

(
2

∫ M

0

tλe−λtdt−
∫ M

0

t2λe−2λtdt

)

→ 2

λ
− 1

2λ
=

3

2λ
quand M → +∞

∫ +∞

0

tλe−λtdt = 1/λ (espérance de ε (λ))

Conclusion : T a une espérance et E (T ) =
3

2λ

Et pour l’espérance de T 2 :

Si X →֒ ε (λ) alors V (X) =
1

λ2
donc E

(
X2

)
= V (X) + E (X)2 =

2

λ2

∫ M

0

t2fT (t) dt =

∫ M

0

t22λe−λt
(
1− e−λt

)
dt

=

(
2

∫ M

0

t2λe−λtdt−
∫ M

0

t22λe−2λtdt

)

→ 4

λ2
− 2

4λ2
=

7

2λ2
quand M → +∞

Donc T 2 a une espérance et E
(
T 2

)
=

7

2λ2
donc T a une variance et

Conclusion : V (T ) =
7

2λ2
− 9

4λ2
=

5

4λ2

N.B. cela permet de valider la loi de T
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Ou bien, en suivant le conseil donné, avec le changement de variable x = λt ou plus
simplement t = x/λ

dt = dt/λ et t = 0 pour x = 0 et t = M pour x = λM

∫ M

0

tλe−λtdt =

∫ λM

0

x

λ
e−xdx

→ 1

λ

∫ +∞

0

xe−xdx =
1

λ
I1 =

1

λ

6. On a X1 +X2 = Z + T et comme V (X1 +X2) = V (X1) + V (X2) par indépendance, et que
V (Z + T ) = V (Z) + V (T ) + 2 cov (Z, T ) alors

cov (Z, T ) =
1

2
[V (Z + T )− V (Z)− V (T )] =

1

2
[V (X1) + V (X2)− V (Z)− V (T )]

=
1

2

[
2

λ2
− 1

4λ2
− 5

4λ2

]
=

1

4λ2

et donc, le coefficient de corrélation linéaire est :

r =
cov (Z, T )√
V (Z)V (T )

=

1

4λ2√
1

4λ2

5

4λ2

=
1√
5

7. a. Comme Y = X1 −X2 alors Y (Ω) = R et |Y | (Ω) = R
+.

b. Pour tout x ∈ R :

F−X2
(x) = P (−X2 6 x) = P (X2 > −x) =





eλx si x 6 0

1 si x > 0

Cette fonction est continue sur ]−∞, 0]et ]0,+∞[ et en 0+ : F−X2
(x) = 1 → 1 = F (0) et

elle est C1 sur R∗

Donc −X2 est bien à densité et une densité est f−X2
(x) =





λeλx si x 6 0

0 si x > 0

c. Si y > 0 on a f−X2
(y − t) =





λeλ(y−t) si t > y

0 si t < y
donc, pour t > y :

fX1
(t) f−X2

(y − t) = λeλ(y−t)λe−λt

= λ2eλye−2λt

donc

∫ M

y

fX1
(t) f−X2

(y − t) dt = λ2eλy
∫ M

y

e−2λtdt

= λ2eλy
1

−2λ

[
e−2λM − e−2λy

]

→ λ

2
e−λy quand → +∞

Donc, pour y > 0 :

∫ +∞

−∞
fX1

(t) f−X2
(y − t) dt converge et vaut

λ

2
e−λy =

λ

2
e−λ|y|
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Pour y < 0 : f−X2
(y − t) =





λeλ(y−t) si t > y

0 si t < y

donc fX1
(t) f−X2

(y − t)





λ2eλye−2λt si t > 0

0 si t < 0
et

∫ +∞

0

fX1
(t) f−X2

(y − t) dt = λ2eλy
∫ +∞

0

e−2λtdt = λ2eλy
1

2λ
=

λ

2
eλy =

λ

2
e−λ|y|

et donc

∫ +∞

−∞
fX1

(t) f−X2
(y − t) dt converge et vaut

λ

2
e−λ|y|

Conclusion : pour tout réel y, l’intégrale

∫ +∞

−∞
fX1

(t) f−X2
(y − t) dt est convergente

et vaut
λ

2
e−λ|y|

d. Soit f (y) =
λ

2
e−λ|y| pour tout y réel.

f est positive et continue sur R.∫ +∞

0

λ

2
e−λ|y|dy =

1

2

∫ +∞

0

λe−λydy =
1

2

(par densité de ε (1) ) et comme f est paire,

∫ 0

−∞
f (y) dy =

1

2
et

∫ +∞

−∞
f (y)dy = 1

Conclusion : y → λ

2
e−λ|y| est une densité de probabilité : celle de Y

e. On détermine la fonction de répartition F|Y | :

Pour tout y < 0 : P (|Y | 6 y) = 0 (événement impossible)

et pour y > 0 : P (|Y | 6 y) = P (−y 6 Y 6 y) = FY (y)− FY (−y) car −y 6 y.

Comme Y est à densité, FY est continue et C1sur R (car fY est continue sur R), alors F|Y |
est continue sur ]−∞, 0[ et sur [0,+∞[

De plus F|Y | (0) = FY (0) − FY (0) = 0 et pour y < 0 : F|Y | (y) = 0 → 0 = F|Y | (0) donc
F|Y | est continue sur R

Donc |Y | est bien à densité et une densité est

f|Y | (y) = F ′
|Y | (y) =





0 si y < 0

fY (y) + fY (−y) =
λ

2
e−λ|y| +

λ

2
e−λ|−y| = λe−λy si y > 0

Conclusion : |Y | →֒ ε (λ)

Partie II. Loi géométrique

Soit p un réel de ]0, 1[ et q = 1 − p. Soit X1 et X2 deux variables indépendantes de même loi
géométrique de paramètre p (d’espérance 1/p).
on pose : Y = X1 −X2, T = max (X1, X2) et Z = min (X1, X2). On rappelle que T + Z = X1 +X2

et T − Z = |X1 −X2| = |Y |.

1. a. On a V (X1) =
q

p2
et de [X1 > k] =≪ échec jusqu’au kième

≫donc P [X1 > k] = qk et

P ([X1 6 k]) = 1− qk , pour tout k de X1 (Ω).

b. E (X1 +X2) = E (X1)+E (X2) =
2

p
, V (X1 +X2) = V (X1)+V (X2) =

2q

p2
par indépendance,
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E (X1 −X2) = 0, V (X1 −X2) = V (X1) + (−1)2 V (X2) =
2q

p2

c. (X1 = X2) =

+∞⋃

i=1

(X1 = i ∩X2 = i) et par incompatibilité

P (X1 = X2) =

+∞∑

i=1

P (X1 = i ∩X2 = i) =

+∞∑

i=1

(
qi−1p

)2
par indépendance.

P [X1 = X2] =

+∞∑

i=1

(
qi−1p

)2

= p2
+∞∑

i=1

(
q2
)i−1

=
p2

1− q2
=

p2

(1− q) (1 + q)

Conclusion : P (X1 = X2) =
p

1 + q

2. a. Pour i ∈ N : [min (X1, X2) > i] = [X1 > i ∩X2 > i] et

P (Z > i) = P (X1 > i) P (X2 > i) par indépendance

= q2i (même pour i = 0 )

Et comme [Z > i− 1] = [Z > i] = [Z = i] ∩ [Z > i] ,par incompatibilité :

P (Z = i) = P (Z > i− 1)− P (Z > i)

= q2i−2 − q2i pour i− 1 > 0

= q2(i−1)
(
1− q2

)
pour i > 1

Et comme Z (Ω) = N
∗ on a bien

Conclusion : Z →֒ G
(
1− q2

)
d’où E (Z) =

1

1− q2
=

1

p (1 + q)
et V (Z) =

q2

(1− q2)2

d’où E (T ) = E (X1 +X2 − Z) =
2

p
− 1

p (1 + q)
=

1 + 2q

p (1 + q)

b. [Z = k] ∪ [T = k] signifie que le plus petit ou le plus grand de X1 et de X2 est égal à k.

Comme l’un est le plus petit et l’autre le plus grand, cela signifie que l’un ou l’autre est
égal à k.

Conclusion : [Z = k] ∪ [T = k] = [X1 = k] ∪ [X2 = k].

et comme

P (Z = k ∪ T = k) = P (Z = k) + P (T = k)− P (T = k ∩ Z = k)

= P (Z = k) + P (T = k)− P (X1 = k ∩X2 = k)

et que

P (X1 = k ∪X2 = k) = P (X1 = k) + P (X2 = k)− P (X1 = k ∩X2 = k)

= 2P (X1 = k)− P (X1 = k ∩X2 = k)

car X1 et X2 on la même loi,

Conclusion : P (T = k) = 2P (X1 = k)− P (Z = k)
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c. On a alors, E
(
T 2

)
=

+∞∑

k=1

k2 (2P (X1 = k)− P (Z = k)) si la série converge.

Or

+∞∑

k=1

k2P (X1 = k) et

+∞∑

k=1

k2P (Z = k) convergent car X1 et Z ont une variance, alors

E
(
T 2

)
=

+∞∑

k=1

k22P (X1 = k)−
+∞∑

k=1

k2P (Z = k)

= 2E
(
X2

1

)
− E

(
Z2

)

= 2
[
V (X1) + E (X1)

2]−
[
V (Z) + E (Z)2

]

= 2

[
q

p2
+

1

p2

]
−
[

q2

(1− q2)2
+

1

(1− q2)2

]

= 2
q + 1

p2
− q2 + 1

p2 (1 + q)2

=
2 (1 + q)2 (q + 1)− q2 − 1

p2 (1 + q)2

=
2q3 + 5q2 + 6q + 1

p2 (1 + q)2

et donc

V (T ) = E
(
T 2

)
− E (T )2

=
2q3 + 5q2 + 6q + 1

p2 (1 + q)2
−

(
1 + 2q

p (1 + q)

)2

=
2q3 + 5q2 + 6q + 1− 1− 4q − 4q2

p2 (1 + q)2

=
2q3 + q2 + 2q

p2 (1 + q)2

=
q (2q2 + q + 2)

(1− q2)2

3. a. max (X1, X2) > min (X1, X2) donc T −Z > 0 et toutes les valeurs entières sont possibles.

Conclusion : (T − Z) (Ω) = N

On a [Z = j] ∩ [Z = T ] = [X1 = j] ∩ [X2 = j] et pour tout j de N
∗

Conclusion : P (Z = j ∩ Z = T ) = P (X1 = j) P (X2 = j) = q2j−2p2 (par indépendance)

b. Si (j, ℓ) de (N∗)2 alors ℓ > 0 et [Z = j]∩ [T − Z = ℓ] = [Z = j]∩ [T = ℓ+ j] avec ℓ+ j 6= j
donc

[Z = j] ∩ [T = ℓ+ j] = (X1 = j ∩X2 = ℓ+ j) ∪ (X2 = j ∩X1 = ℓ+ j)

et par ∪ d’incompatible et ∩ d’indépendants,

P (Z = j ∩ T − Z = ℓ) = P (X1 = j) P (X2 = ℓ+ j) + P (X2 = j) P (X1 = ℓ+ j)

= 2qj−1pqℓ+j−1 = 2p2q2j+ℓ−2
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c. Si k = 0 alors

(X1 −X2 = 0) =

+∞⋃

i=1

(X1 = i ∩X2 = i) donc

P (X1 −X2 = 0) =

+∞∑

i=1

P (X1 = i) P (X2 = i)

=

+∞∑

i=1

q2(i−1)p2 avec j = i− 1

= p2
+∞∑

j=0

q2j et |q| < 1

= p2
1

1− q2
=

pq|0|

1 + q

Si k > 0 alors

(X1 −X2 = k) = (X1 = X2 + k)

=
+∞⋃

i=1

(X1 = i+ k ∩X2 = i) donc

P (X1 −X2 = k) =
+∞∑

i=1

P (X1 = i+ k) P (X2 = i) avec i+ k > 1

=

+∞∑

i=1

qi+k−1pqi−1p

= qkp2
+∞∑

i=1

q2(i−1) avec j = i− 1

= qkp2
1

1− q2
=

qkp

1 + q
=

pq|k|

1 + q

et si k < 0 :

(X1 −X2 = k) = (X2 = X1 − k)

=
+∞⋃

i=1

(X1 = i− k ∩X2 = i) donc

P (X1 −X2 = k) =
+∞∑

i=1

P (X1 = i− k) P (X2 = i) avec i− k > 1

=
+∞∑

i=1

qi−k−1pqi−1p

=
q−kp

1 + q
=

pq|k|

1 + q

Conclusion : pour tout k ∈ Z : P ([X1 −X2 = k]) =
pq|k|

1 + q

d. On a |X1 −X2| (Ω) = N
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(|X1 −X2| = 0) = (X1 −X2 = 0) donc P (|X1 −X2| = 0) =
p

1 + q
et pour k > 0 : (|X1 −X2| = k) = (X1 −X2 = k) ∪ (X1 −X2 = −k) incompatibles et

Conclusion : P (|X1 −X2| = k) = 2
pqk

1 + q
si k > 0

P (|X1 −X2| = 0) =
p

1 + q

e. On a vu que T − Z = |X1 −X2|
Pour tout (j, ℓ) ∈ [N∗]2 :

P (Z = j ∩ T − Z = ℓ) = 2p2q2j+ℓ−2 et d’autre part

P (Z = j) P (T − Z = ℓ) = P (Z = j) P (|X1 −X2| = ℓ)

= q2(j−1)
(
1− q2

)
2

pqℓ

1 + q

= 2q2jq−2 (1 + q) (1− q)
pqℓ

1 + q

= P (Z = j ∩ T − Z = ℓ)

et pour j ∈ N
∗ :

P (Z = j ∩ T − Z = 0) = q2j−2p2 et d’autre part

P (Z = j) P (T − Z = 0) = P (Z = j) P (|X1 −X2| = 0)

= q2(j−1)
(
1− q2

) p

1 + q

= P (Z = j ∩ T − Z = 0)

Conclusion : Z et T − Z sont indépendantes.

4. a. Comme Z et T − Z sont indépendantes, leur covariance est nulle.

Et comme cov (Z, T − Z) = cov (Z, T )− cov (Z,Z) = cov (Z, T ) + V (Z) alors

Conclusion : cov (Z, T ) = −V (Z) 6= 0

et T et Z ne sont pas indépendantes.

On pouvait le dire plus rapidement en remarquant que T > Z donc, par exemple (T = 1 ∩ Z = 2) =
∅ alors que P (T = 1)P (Z = 2) 6= 0

b. On a

ρ =
cov (Z, T )√
V (T ) V (Z)

= −
√

V (Z)

V (T )

= −

√√√√√
q2

(1−q2)2

q(2q2+q+2)

(1−q2)2

= −
√

q

2q2 + q + 2

c. Pour (i, j) ∈ N
∗

– Si i > j alors (Z = i ∩ T = j) = ∅ donc P (Z = i ∩ T = j) = 0
– Si i = j alors (Z = i ∩ T = i) = (X1 = i ∩X2 = i) et P (Z = i ∩ T = i) = q2i−2p2
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– Si i < j alors (Z = i ∩ T = j) = (X1 = i ∩X2 = j)∪(X1 = j ∩X2 = i) (incompatibilité,
puis indépendance)
P (Z = i ∩ T = j) = 2qi+j−2p2

d. PZ=j (T = k) = 0 si j > k car Z > T est impossible.
Si j = k alors

PZ=j (T = j) =
P (Z = j ∩ T = j)

P (Z = j)

=
q2(j−1)p2

q2(j−1) (1− q2)

=
p2

1− q2
=

p

1 + q

Si j < k

PZ=j (T = k) =
P (Z = j ∩ T = k)

P (Z = j)

=
2q2(j+k−2)p2

q2(j−1) (1− q2)

=
2q2kp

1 + q

On suppose qu’il existe une variable aléatoireDj à valeur dans N
∗, dont la loi de probabilité

est la loi conditionnelle de T sachant l’évènement [Z = j].

On a donc P (Dj = k) =





0 si k < j
p

1 + q
si k = j

2q2kp

1 + q
si k > j

et donc (sous réserve de convergence)

E (Dj) =
+∞∑

k=j

kP (Dj = k)

= j
p

1 + q
+

+∞∑

k=j

k
2q2kp

1 + q

= j
p

1 + q
+

2pq2j

1 + q

+∞∑

k=j

kq2(k−j)

= j
p

1 + q
+

2pq2j

1 + q

+∞∑

k=0

(h+ j) q2h

= j
p

1 + q
+

2pq2j

1 + q

[
q2

(1− q2)2
+

1

1− q2

]

= j
p

1 + q
+

2pq2j

1 + q

1

(1− q2)2

Qui converge bien, donc Dj a une espérance et

Conclusion : E (Dj) = j
p

1 + q
+

2pq2j

1 + q

1

(1− q2)2
.
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Partie III. Convergences

Dans les questions 1 à 4, λ désigne un paramètre réel strictement positif, inconnu.
pour n élément de N

∗, on considère un néchantillon (X1, X2, ..., Xn) de variables aléatoires à valeurs
strictement positives, indépendantes, de même loi exponentielle de paramètre λ.

On pose pour tout n de N
∗ : Sn =

n∑

k=1

Xk et Jn = λSn.

1. On a E (Sn) =

n∑

k=1

E (Xk) = n/λ, et V (Sn) =

n∑

k=1

V (Xk) = n/λ2 par indépendance.

E (Jn) = λE (Sn) = n et V (Jn) = λ2V (Sn) = n

2. On admet qu’une densité fJn de Jn est donnée par fJn (x) =





e−xxn−1

(n− 1)!

0

si x > 0

si x 6 0
.

a. Soit n > 3. Sous réserve d’absolue convergence (ssi convergence simple car tout est positif),

E

(
1

Jn

)
=

∫ +∞

0

1

x

e−xxn−1

(n− 1)!
dx

=

∫ +∞

0

e−xxn−2

(n− 1)!
dx

=
1

(n− 1)!
In−2 converge car n− 2 ∈ N

=
(n− 2)!

(n− 1)!

=
1

n− 1

Et de même

E

(
1

J2
n

)
=

∫ +∞

0

1

x2

e−xxn−1

(n− 1)!
dx

=

∫ +∞

0

e−xxn−3

(n− 1)!
dx

=
1

(n− 1)!
In−3 converge car n− 3 ∈ N

=
(n− 3)!

(n− 1)!

=
1

(n− 1) (n− 2)

Conclusion : E

(
1

Jn

)
et E

(
1

J2
n

)
existent et

E

(
1

Jn

)
=

1

n− 1
et E

(
1

J2
n

)
=

1

(n− 1) (n− 2)

b. λ̂n est une fonction du n échantillon. Donc c’est un estimateur de λ.

λ̂n = λ
n

λSn
= λn

1

Jn
donc E

(
λ̂n

)
= λnE

(
1

Jn

)
= λn

1

n− 1
6= λ

Donc le biais est b = E
(
λ̂n

)
− λ =

λ

n− 1

10



Conclusion : λ̂n est biaisé.

V
(
λ̂n

)
= V

(
λn

1

Jn

)
= λ2n2V

(
1

Jn

)

avec

V

(
1

Jn

)
= E

(
1

J2
n

)
− E

(
1

Jn

)2

=
1

(n− 1) (n− 2)
− 1

(n− 1)2

=
1

(n− 1)2 (n− 2)

V
(
λ̂n

)
=

λ2n2

(n− 1)2 (n− 2)

Donc le risque quadratique est

r = V
(
λ̂n

)
+ b2

=
λ2n2

(n− 1)2 (n− 2)
+

(
λ

n− 1

)2

=
λ2 (n2 + n− 2)

(n− 1)2 (n− 2)
=

λ2 (n− 1) (n + 2)

(n− 1)2 (n− 2)

=
λ2 (n + 2)

(n− 1) (n− 2)

Conclusion : le risque quadratique λ̂n tend vers 0 quand n tend vers +∞

3. Dans cette question, on veut déterminer un intervalle de confiance du paramètre λ au risque α.
On note Φ la fonction de répartition de la loi normale centrée réduite, et uα le réel strictement

positif tel que Φ (uα) = 1− α

2
.

a. Etant donné une suite de variables aléatoires (Xn) indépendantes, de même loi et de
variance non nulle, alors la somme centrée réduite des n premiers converge en loi vers
N (0, 1) .

C’est à dire que la fonction de répartition de la somme centrée réduite tends vers Φ.

Sn =

n∑

k=1

Xk a pour espérance n/λ et pour variance n/λ2.

Les (Xk)k∈N sont indépendantes et ont une variance non nulle. Donc la centrée réduite
Sn − n

λ√
n
λ

= Nn converge en loi vers la loi normale centrée réduite.

b. Donc, pour n assez grand, P (−uα 6 Nn 6 uα) ≃ Φ (uα) − Φ (−uα) car −uα 6 uα et

comme Φ (−uα) = 1− Φ (uα) =
α

2
.

Conclusion : P (−uα 6 Nn 6 uα) ≃ 1− α

c. On résout : λ ∈
[(

1− uα√
n

)
λ̂n,

(
1 +

uα√
n

)
λ̂n

]

⇐⇒
(
1− uα√

n

)
n

Sn
6 λ 6

(
1 +

uα√
n

)
n

Sn

⇐⇒
(
1− uα√

n

)
n

λ
6 Sn 6

(
1 +

uα√
n

)
n

λ

11



⇐⇒ − uα√
n

n

λ
6 Sn −

n

λ
6

uα√
n

n

λ
⇐⇒ −uα 6 Nn 6 uα

Donc P

(
λ ∈

[(
1− uα√

n

)
λ̂n,

(
1 +

uα√
n

)
λ̂n

])
= P (−uα 6 Nn 6 uα) ≃ 1− α

Conclusion :

[(
1− uα√

n

)
λ̂n,

(
1 +

uα√
n

)
λ̂n

]
est un intervalle de confiance de λ

au niveau de risque α quand n est grand.

On note λ0 la réalisation de λ̂n sur le n-échantillon.

4. Avec le n-échantillon (X1, X2, ..., Xn), on construit un nouvel intervalle de confiance de λ au
risque β (β 6= α), tel que la longueur de cet intervalle soit k (k > 1) fois plus petite que celle
obtenue avec le risque α.

a. Comme la densité ϕest continue sur R, Φ est de classe C1 sur R.

Et comme Φ′ = ϕ > 0 alors Φ est strictement croissante sur R.

Elle et donc bijective de R sur

]
lim
−∞

Φ; lim
+∞

Φ

[
= ]0, 1[

Conclusion : Φ a une réciproque Φ−1

qui est définie sur ]0, 1[

b. L’intervalle de confiance précédent est

[
λ̂n −

uα√
n
λ̂n , λ̂n +

uα√
n
λ̂n

]
centré sur λ̂n et de

rayon
uα√
n
λ̂n.

Celui de longueur k fois plus petite est

[
λ̂n −

uα

k
√
n
λ̂n , λ̂n +

uα

k
√
n
λ̂n

]

et comme précédemment,

λ ∈
[
λ̂n −

uα

k
√
n
λ̂n , λ̂n +

uα

k
√
n
λ̂n

]

⇐⇒ −uα/k 6 Nn 6 uα/k

Donc

P

(
λ ∈

[
λ̂n −

uα

k
√
n
λ̂n , λ̂n +

uα

k
√
n
λ̂n

])
= Φ

(uα

k

)
− Φ

(
−uα

k

)

= 2Φ
(uα

k

)
− 1

On a Φ (uα) = 1− α

2
donc uα = Φ−1

(
1− α

2

)
qui ne simplifie pas l’écriture

d’où, astuce : Φ (−uα) = 1− Φ (uα) =
α

2
et −uα = Φ−1 (α/2) soit uα = −Φ−1 (α/2) d’où

Φ
(uα

k

)
= Φ

(
−Φ−1 (α/2)

k

)
= 1− Φ

(
Φ−1 (α/2)

k

)

et la probabilité :

P (λ ∈ [· · · ]) = 1− 2Φ

(
1

k
Φ−1 (α/2)

)

12



Conclusion :

[
λ̂n −

uα

k
√
n
λ̂n , λ̂n +

uα

k
√
n
λ̂n

]
est un intervalle de confiance de λ

au niveau de risque β = 2Φ

(
1

k
Φ−1 (α/2)

)

On remarque que α = 2Φ
(
Φ−1 (α/2)

)
et on résout :

β > α ⇐⇒ Φ

(
1

k
Φ−1 (α/2)

)
> Φ

(
Φ−1 (α/2)

)

⇐⇒ 1

k
Φ−1 (α/2) > Φ−1 (α/2) et comme

1

k
> 1 et que Φ−1 (α/2) > 0, cette inégalité est

bien vérifiée.

Conclusion : β > α ce qui était prévisible :

La probabilité d’être dan un intervalle plus étroit est plus petite !

Dans les questions 5 à 7, on suppose que λ = 1.

5. On pose pour tout n de N
∗ : Tn = max (X1, X2, ..., Xn).

Pour tout n de N
∗, pour tout réel x positif ou nul, on pose : gn (x) =

∫ x

0

FTn
(t) dt et hn (x) =

∫ x

0

tfTn
(t) dt

a. hn (x) =

∫ x

0

tfTn
(t) dt

On l’intègre par parties pour faire apparâıtre

∫ x

0

FTn
(t) dt :

Soit u′ (t) = fTn
(t) : u (t) = FTn

(t) et v (t) = t : v′ (t) = 1

v est C1 et u est C1 sur R+ car la densité fTn
est continue sur R+.

Donc
∫ x

0

tfTn
(t) dt = [tFTn

(t)]x0 −
∫ x

0

FTn
(t) dt

= xFTn
(x)− gn (x)

Conclusion : hn (x) = xFTn
(x)− gn (x)

b. Pour tout t ∈ R : (Tn 6 t) = max (X1, X2, ..., Xn) =

n⋂

i=1

(Xi 6 t) indépendants donc

FTn
(t) =

n∏

i=1

P (Xi 6 t) = [FX (t)]n

Pmax (X1, X2, ..., Xn)

∫ t

−∞
fTn

(x) dx = 0 si t 6 0

et si t > 0 :

∫ t

−∞
fTn

(x) dx =

∫ 0

−∞
0dx+

∫ t

0

e−xdx =
[
−e−x

]t
0
= 1− e−t

Conclusion : FTn
(t) =





0 si t < 0
(
1− e−t

)n
si t > 0

13



Soit n > 2 (pour avoir n− 1 ∈ N
∗ )

gn−1 (x)− gn (x) =

∫ x

0

(
FTn−1

(t)− FTn
(t)

)
dt

=

∫ x

0

((
1− e−t

)n−1 −
(
1− e−t

)n)
dt

=

∫ x

0

(
1− e−t

)n−1
e−tdt à la volée :

=

[
1

n

(
1− e−t

)n
]x

0

=
1

n

(
1− e−x

)n − 0

Conclusion : Pour n > 2 : gn−1 (x)− gn (x) =
1

n
FTn

(x)

c. On a donc pour n > 2 : gn (x) = gn−1 (x)−
1

n
FTn

(x) et par récurrence :

gn (x) = −1

n
FTn

(x)− 1

n− 1
FTn−1

(x) · · · − 1

2
FT2

(x) + g1 (x)

et comme

g1 (x) =

∫ x

0

FT1
(t) dt =

∫ x

0

1− e−tdt =
[
t+ e−t

]x
0

= x+ e−x − 1

= x− 1

1
FT1

(x)

Conclusion : gn (x) = x− 1

n
FTn

(x)− 1

n− 1
FTn−1

(x) · · · − 1

2
FT2

(x)− 1

1
FT1

(x)

d. Pour x > 0 : FTn
(x)− 1 =

(
1− e−x

)n − 1

Comme −e−x → 0 quand x → +∞ et que (1 + x)α − 1 ∼ αx quand x → 0 alors (α = n)

Conclusion : FTn
(x)− 1 ∼ −ne−x quand x → +∞

e. Tn a une espérance si

∫ x

0

tfTn
(t) dt = xFTn

(x)− gn (x) a une limite finie quand x → +∞
Astuce : On réécrit xFTn

(x) − gn (x) = x (FTn
(x)− 1) + x− gn (x) pour faire apparâıtre

la quantité dont on a un équivalent.

Or x (FTn
(x)− 1) ∼ −nxe−x → 0 car x = o (ex) quand x → +∞ donc x (FTn

(x)− 1) →
0.

D’autre part, toute fonction de répartition tend vers 1 en +∞ donc

x− gn (x) =
1

n
FTn

(x) +
1

n− 1
FTn−1

(x) · · ·+ 1

2
FT2

(x) +
1

1
FT1

(x)

→
n∑

k=1

1

k
quand x → +∞

Conclusion : Tn a une espérance et E (Tn) =

n∑

k=1

1

k
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6. On veut étudier dans cette question la convergence en loi de la suite de variables aléatoires
(Gn)n>1 définie par : pour tout n de N

∗, Gn = Tn − E (Tn).
On pose pour tout n de N∗ : γn = − lnn+E (Tn) et on admet sans démonstration que la suite
(γn)n>1 est convergente ; on note γ sa limite.

a. Pour tout x réel :

FGn
(x) = P (Gn 6 x) = P (Tn 6 x+ E (Tn))

= FTn
(x+ E (Tn))

avec x+ E (Tn) = x+ γn + ln (n)

Et comme E (Tn) → +∞ quand n → +∞, pour n suffisamment grand on aura E (Tn)−x >

0 et donc FTn
(· · · ) =

(
1− e−···)n

FTn
(x+ E (Tn)) =

(
1− e−(x+γn+ln(n))

)n

=
(
1− e− ln(n)e−(x+γn)

)n

Conclusion : pour tout x réel et n assez grand, on a :

FGn
(x) =

(
1− 1

n
e−(x+γn)

)n

.

b. On a une forme indéterminée 1∞ qu’il faut résoudre :

(
1− 1

n
e−(x+γn)

)n

= exp

[
n ln

(
1− 1

n
e−(x+γn)

)]

Comme e−(x+γn) → e−(x+γ) et que −1

n
e−(x+γn) → 0 alors

ln

(
1− 1

n
e−(x+γn)

)
∼ −1

n
e−(x+γn) et

[
n ln

(
1− 1

n
e−(x+γn)

)]
∼ −e−(x+γn) → −e−(x+γ) donc

(
1− 1

n
e−(x+γn)

)n

→ exp
[
−e−(x+γ)

]

Et comme n → +∞, il sera ”suffisamment grand” et

Conclusion : FGn
(x) → exp

[
−e−(x+γ)

]
quand n → +∞

c. Pour tout x réel, FG (x) = exp
[
−e−(x+γ)

]

FG est continue et C1 sur R

En −∞ : −e−(x+γ) → −∞ donc FG (x) → 0

En −∞ : −e−(x+γ) → 0 et FG (x) → 1

Enfin , FG est croissante sur R. (composée de deux fonctions décroissantes sur R ou par
F ′
G (x) = exp

[
−e−(x+γ)

]
×−e−(x+γ) ×−1 > 0 )

Conclusion : FG est la fonction de répartition d’une variable à densité G et

(Gn)n∈N∗ converge en loi vers la loi de G
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7. a. SoitX une variable aléatoire à densité de fonction de répartition FX strictement croissante.

Pour tout x réel, (Y 6 x) = (FX (X) 6 x)

Comme FX est continue sur R (variable à densité) et qu’elle est strictement croissante,
elle est bijective de R sur ]0, 1[ et admet une réciproque.

– Si x 6 0 : (Y 6 x) = ∅ et FY (x) = 0
– Si x > 1 : (Y 6 x) = Ω et FY (x) = 1
– Si x ∈ ]0, 1[ : (Y 6 x) =

(
X 6 F−1

X (x)
)
donc FY (x) = FX

(
F−1
X (x)

)
= x

et on reconnâıt la fonction de répartition de la loi uniforme sur [0, 1]

Conclusion : Y →֒ U[0,1]

b. La variable aléatoire G a pour fonction de répartition FG : x → exp
[
−e−(x+γ)

]
continue

et strictement croissante sur R.

Donc Y = FG (G) →֒ U]0,1[. reste à déterminer G en fonction de Y :

Y = FG (G) ⇐⇒ Y = exp
[
−e−(G+γ)

]

⇐⇒ ln (Y ) = −e−(G+γ) car Y > 0

⇐⇒ ln (− ln (Y )) = −G− γ car − ln (Y ) > 0 puisque Y < 1

⇐⇒ G = −γ − ln (− ln (Y ))

d’où la simulation :

def Gumbel ():

y=rd.random ()

return -np.euler_gamma -np.log(-np.log(Y))
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