ECG 2 - maths appli. TD 10 - variables aléatoires a densité Janvier 2026

Corrigés ou éléments de corrigés

Densité, espérance, variance et quelques opérations

Exercice 6 - densité, opérations sur les variables aléatoires

On pose f(z) = A(1 —z) pour z €]0,1] et f(z) =0si xz € R\]0,1[, ou A désigne un réel.
1. Calculer / f(t)dt
0

1
On trouve /01 f@®)de =X\ [_%]O _ %

2. En déduire la valeur de A pour que f soit une densité de probabilité.
On conservera cette valeur pour A pour la suite de I’exercice.

+00 1
f(t)dt = / f(t)dt =1 si et seulement si A = 2
—00 0
Dans ce cas, [ est aussi positive et continue sur R\{0,1}, et admet des limites finies & gauche et a

droite de 0 et de 1, donc définit une densité de probabilité.

3. Si X est une variable aléatoire de densité f, déterminer sa fonction de répartition Flx, son espérance
E(X) et sa variance V(X))

f est une densité de X (et admet des limites finies a droite et & gauche en tout point) donc pour z € R,

/fdt

e Siz <O0: festnullesur]|—oo,z| donc Fx(x) :/ 0dt =0

—00

e Si0<z <1, Fy(z / f(t dt+/f t)dt = /2(1—t)dt:[—(1—t)2]§:1—(1—x)2

donc Fy(z) = 2z — 2° = 2(2 — )

e Siz>1:Fx(x / f(t dt+/f

e Conclusion :

0 stz <0
Fx(r)=q z(2—-2) si0<z<1
1 six > 1.

Par ailleurs X admet une espérance et un moment d’ordre 2 car f est nulle en dehors de [0, 1]

ot E(X) = /Otf()dtzz/olta—t)dtzz/ol(t—ﬂ)dtzzxg_g]zzzx(%—%):é

de maniere analogue :

! ! ! Gk 11\ 1
E(XQ):/0 th(t)dt:2/0 t2(1—t)dt:2/0(t2—t3)dt:2><[5—2]0:2x<§—1>:6

donc, d’apres la formule de Kcenig-Huygens, X admet une variance

1 1\? 3 2 1
etV(X):E(XQ)—E(X)2:6—<§> =S "1

4. Pour chacune des variables suivantes, montrer qu’elle est a densité et en déterminer la fonction de
répartition ainsi qu’une densité :

Vi=14+X, Yo=1-X, Ys=VX, YVy=In(X), Ys=X2 Y;=exp(X)
Rappels

> On détermine la loi de chaque variable en déterminant la fonction de répartition.



>

>

a)

Une variable est & densité si sa fonction de répartition F est C' sur R privé d’un nombre fini de
points.

On détermine une densité pour une variable a densité en dérivant sa fonction de répartition et en
., \ / . \
donnant des valeurs positives & F' aux points ot F n’est pas C*.

Pour Y; :
Fonction de répartition.
Pourz e R: Fy,(z) =P(Y1 <z)=P(X <z —1).

On obtient :
0 six—1<0 0 six <1
Fri(z) =9 (z-1D2—-(z—-1) si0<r—-1<1 =9 (z-1)B-2) sil<z<?2
1 sizx—1>1 1 six > 2

Classe € sauf en un nombre fini de points.

Fy, est de classe C*

sur | — oo, 1] : fonction nulle, L
donc| Fy, est de classe € sur R\{1,2}

sur |1, 2[ : fonction polynomiale,
sur ]2, 4o0[ : fonction constante,
Continuité sur R de Fy; :
En 1 : hI{l Fy,(x) = lim 0 = 0 et lim Fy,(z) = lim (z —1)(3 —z) = 0 = Fy,(1) donc
r—1—

r—1— r—14 rz—1+4

Fy, est continue en 1

En 2 : lim Fy,(x) = lim (z —1)(3—2) = 1l et lim Fy,(z) = lim 1 = 1 = Fy,(2) donc

T—2— T—2— T2+ T2+
Fy, est continue en 2.

Comme on sait déja que Fy, est continue sur R\{1,2}, car €',| Fy, est continue sur R tout entier

Conclusion : | Yj est une variable a densité.

Comme une densité de Y; coincide avec Fy, sur R\{1,2}, on peut choisir pour densité : fy, définie
par :

0 stz <1
fri(@) =< —22+4 sil<ax<?2
0 sixz > 2

Remarque : on aurait pu conclure directement que Fy, est ¢! sur R privé d’un nombre fini de
points et €° sur R tout entier par composition, puisque Fy,(z) = Fx(z — 1) pour tout z puis
trouver une densité en dérivant. Dans des cas simples, comme celui-ci, c’est plus rapide; dans des
cas plus compliqués, il faudra faire attention a la dérivation composée et aux points ou elle est
valide (source d’erreurs).

Pour Y5.

Fonction de répartition.

Pour z e R: Fy,(z) = P(X > 1 —x).

Comme X est & densité : Fy,(z) = P(X >1—2)=1—-P(X <1—2) =1—Fx(1—2z) On obtient :

1-0 sil—xz<0 0 six <0
Fy(z)=q¢ 1-(1-2)2-(1-2)) si0<l-2z<1 =4 2% sio<z<1
1-1 sil—az>1. 1 siz>1



Classe € sauf en un nombre fini de points.

Fy, est de classe C!

sur | — 00, 0[ : fonction nulle,

donc

sur |0, 1] : fonction polynomiale,

sur |1, 4o0[ : fonction constante,
Continuité sur R de Fy; :

EnO: lim Fy,(z) = lim 0=0et lim Fy,(x)
z—0— z—0— z—0+

Enl: lim Fy,(z)
r—1—

z—0+

= lim 2?2 =1et lim Fy,(x)
z—1— z—1+ z—1+

Comme on sait déja que Fy, est continue sur R\{0, 1}, car €,

Conclusion :| Y5 est une variable a densité.

Fy, est de classe € sur R\{0,1}

= lim 2% = 0 = Fy,(0) donc Fy, est continue en 0

= lim 1 =1= Fy,(1) donc Fy, est continue en 1.

Fy, est continue sur R tout entier

Comme une densité de Ys coincide avec Fy, sur R\{0,1}, on peut choisir pour densité : fy, définie

par :

0 sizéglo,
siz e [0,1]

fYQ (:C) =
2x

c) Pour Y;
Fonction de répartition :

Pour z € R : Fy,(z) = P(VX < z).

e Pour z < 0 : [VVX < 2] est impossible, donc Fy, (x) = 0.
e Pour z > 0 : Fy,(x) =
Comme 22 > 0, on obtient :

1]

P(X < 2%) = Fx (%) (par croissance de la fonction carré sur R )

222 -2 sio<a?<1
FYS('I): 9
1 sixz®>1
et comme x > 0, Vz2 = z, donc :
2?2 -2%) si0<z<1
FYS('I):
1 sixz > 1.
0 sizx <0
Conclusion : | Fy,(x) = x2(2—x2) sio<z<<1
1 six > 1.

Fy, est €' sur R\{0, 1}, et Fy, est €° sur R (& rédiger comme pour Yj et Y3), donc Y3 est & densité

et on peut choisir pour densité :

0
st(x) = 3 5
dr — 4x° = 4x(1 — x*)
d) Pour Yy
Pour z € R: Fy,(z) = P(In(X) < z) =
On obtient :
0 sie” <0
Fy,(z) = e*(2—¢%) si0<e* <1

1 sie’ >1

sixz & 0,1]

si z €0,1]

P(X < €"). (par croissances des fonctions In et exp)

— impossible




donc :

e®(2—e%) =2e" —e** siz <0
Fy,(z) =
1 sixz > 0.

Fy, est C! sur R\{0}, Fy, est €" sur R (& rédiger comme pour le reste), donc Yj est & densité et
on peut choisir pour densité :

0 siz >0
fy4(£l?) =

2¢” — 2e*" = 2e"(1 —¢%) siz <0
Pour Y5
Pour 2 € R : Fy,(z) = P(X? < 2)
e Pour z < 0 : [X? < 2] est impossible, donc Fy; (x) = 0

e Pour z > 0 : Fy,(z) = P(X < Vx) = Fx(v/z) (par croissance des fonctions carré et racine sur

Ry)
Comme +/z > 0, on obtient :

V@2 —vr)=2yz—x si0<yz <1

FY5(x) =
1 si o > 1.
0 six <0
Conclusion : | Fy;(z) =19 2z —2 si0<z<1
1 stz >1

Fy. est €' sur R\{0,1} et €° sur R (& rédiger, par opérations sur les fonctions), donc Yj est &
densité et on peut choisir pour densité :

0 si x €]0,1]
fys(z) = 1 .
— —1 size€]0,1]
N3
A Ici, fy. admet une limite infinie en 0+.
rT
On ne pourra pas écrire (dans le cadre du programme) : P(Y; < z) = / fys (t)dt pour z > 0.
— 0o

Par contre, par exemple, Y5 admet bien une espérance avec :

E(x5):/+ootfy5(t)dt=/ol(x/¥t)dt.

— 0o
Pour Yj
Pour z € R : Fy,(z) = P(e® < )
e Pour 2 <0 : [¢¥ < 2] est impossible, donc Fy, (z) = 0
e Pour z > 0: Fy,(z) = P(X <In(z)) = Fx(Inz) (par croissance de In et exp)
On obtient :

0 si In(z) <0
Fyg(z) = In(2)(2 —In(z)) si0<In(z) <1
1 si In(x) > 1
0 sixz <1
Conclusion : | Fy;(z) = ¢ In(z)(2 —In(z)) sil<z<e
1 siz>e




Fy, est €' sur R\{1,e} et €° sur R (& rédiger, par opérations sur les fonctions), donc Yg est a
densité et on peut choisir pour densité :

0 si x €1, €]
frs(w) =49 92— In(x) .
————= siz €]l
x
Autres exemples de lois
Exercice 1 - loi Gamma (Essec - HEC)
+00 ) . 0 sit 0
Onpose,poura>1:Pa:/ e, et fo(t) = 1
=, () — e st >0

Vérifier que I'(«) est bien définie pour o > 1
Vérifier que f, est une densité de probabilité, pour o > 1

En utilisant une intégration par parties, montrer que I'(a 4+ 1) = aI'(«) pour tout o > 1.

oW b=

Montrer que, si X est de densité f,, X admet une variance et :

EX)=«a et V(X)=«a

Exercice 2 (difficile)

Soit X une variable a densité de densité f vérifiant : f(t) = 0 pour ¢t < 0, et f continue sur R} admettant
une limite finie en 07
Soit F' la fonction de répartition de X. On note R(x) =1 — F(x) pour z > 0

1. Montrer que, pour A > 0,/ tf(t)dt + AR(A / R(t
0

2. On suppose dans cette question que / R(t)dt converge.
0

A 400
a. Vérifier que : VA > 0, / tf(t)dt < R(t)dt
0 0

b. En déduire que :

i. X admet une espérance
+oo

ii. B(X) g/ R(t)dt
0

iii. zR(z) —— 0
T—r+00

3. On suppose dans cette question que X admet une espérance.

+o0
a. Justifier que : VA > 0, / tf(t)dt > AR(A) >0
A

+oo
b. En déduire que : AlirJrrl AR(A) =0, puis que E(X) = / R(t)dt
—+00 0

+o0
4. Déduire des deux questions précédentes que X admet une espérance si, et seulement si : / R(t)dt
0

+oo +oo
converge et dans ce cas : E(X) = R(t)dt = / (1= F(t))dt
0 0



Opérations sur les variables aléatoires (et simulation Python)
Exercice 3 - transformations affines (classique)

On considere une variable aléatoire réelle X

1. On suppose dans cette question que X suit la loi uniforme sur [0, 1]
Déterminer la fonction de répartition de Y = 3X — 2. Est-ce que Y est une variable a densité ?

2. On suppose dans cette question que X suit la loi exponentielle de parametre 3
Déterminer la fonction de répartition de Y = 2X + 1. Est-ce que Y est une variable a densité ?

3. On suppose dans cette question que X suit la loi normale centrée réduite N(0,1)
On pose Y = aX +boua € R* et b € R. Justifier que Y admet une espérance et une variance et

calculer E(Y) et V(Y)
Quelle loi suit la variable Y ?

Exercice 11 - fonction de répartition de X? (classique)
Déterminer la fonction de répartition de X2, et vérifier que X2 est & densité dans les cas suivants :
1. X suit la loi uniforme U([—1,1])
Dans tous les cas (valable quelle que soit la variable aléatoire X) :
° pourx<O:P(X2§x):0
e pourz > 0: P(X2 < x) = P(X| < V&) = P(—VE < X < V&) = Fx(Va) - Fx(~va)
Cas ot X — U([-1,1])

0 six < —1 1
i +Ve sio<r<1
Fx(z) = si —1<z<1 donc Fx(vz)= 2
2 1 siz>1
1 sixz>1
1_ 0 six <0,
VT sio<xr <1
et Fx(—Vx) = 2 donc:| Fy2(z) =< z sio<ax<1
0 six>1 ]
1 six>1

Remarque : X2 est & densité.
2. X suit la loi exponentielle de parametre 1

Cas ou X — £(1)

0 sizx <0
Fx(l'):
1—e™ siz>0

donc : Fx(vz) =1—¢ V¥ car vz > 0 et Fx(—/z) =0, dou :

Fya(x) 0 siz <0,
x2\T) =
1—e Vo six >0

Exercice 12 - fonction de répartition d’un minimum, d’un maximum

On considére deux variables aléatoires réelles indépendantes X et Y et on pose U = min(X,Y), V =
max(X,Y).

On rappelle que, pour a € R : [U 2 a] =[X Za]N[Y Zalet [V <a]=[X <a|N[Y <d]

Dans tous les cas (en passant aux probabilités a partir des égalités précédentes) :
PULz)=1-PU>x)=1—-P(X >x)P(Y > x) car X et Y sont indépendantes.



et P(V<xz)=P{U<z)P(V <x)car X et Y sont indépendantes.
Fy(z) =1—-(1-Fx(z)) (1 - Fy(z))
Fv(.%') = Fx(x)Fy(l')

Donc : Vx € R,

1. On suppose dans cette question que X — E(A) et Y — E(u) avec A > 0, > 0
Déterminer les fonctions de répartition de U et de V. Ces variables sont-elles a densité ?

Casou X — E(N\) et Y — E(p).

On a, pour z > 0,1 — Fx(z) = P(X >z) =e et 1 — Fy(z) = P(Y > ) = e " et Fy(z) =0
0 six <0

pour z < 0 donc : Vz € R, Fy(x) =
1—eMeht — 1 — e~ MWz ¢ 2>

Conclusion : U = min(X,Y) — E(A + )

2. On suppose dans cette question que X — U([0,1]) et Y — U(]0, 1])
Déterminer les fonctions de répartition de U et de V. Ces variables sont-elles a densité ?

Cas ott X et Y suivent la méme loi ([0, 1]).
Dans ce cas (apres calculs a faire) :

0 siz <O 0 siz <0
VﬂUGR’FU(x):l—(l—FX(SU))QZ (1—30)2 sio<zr<1 et Fy(z)=¢ 22 sio<z<1
1 six>1 1 sixz>1

Exercice 13 - fonction de répartition et simulation Python : méthode d’inversion

Les questions 1., 2. et 3. sont indépendantes

1
1. On considére une variable aléatoire X — U([0,1[). On pose Y = ~3 In(1 — X), avec A >0
Montrer que Y suit la loi £(\)

2. (HEC) Plus généralement, on suppose que f est une densité vérifiant f > 0 sur RY, et f est nulle sur
R_

a. Justifier que la fonction de répartition F' associée a f réalise une bijection de Ry vers [0, 1]
On note G la fonction réciproque de cette fonction, c’est-a-dire la fonction définie sur [0, 1], &

valeurs dans Ry et vérifiant :
Vye 0,1, F(G(y) =y

b. Soit X < U[0,1[. Montrer que Y = G(X) a pour fonction de répartition F

3. Application (tous concours)

On pose f(t) = 2te™" pour ¢ > 0, et f(t)=0pourt<0
a. Vérifier que f est une densité de probabilité. On note X une variable aléatoire de densité f
b. Déterminer F(z) pour z € R, puis G(y) = F~*(y) pour y € [0,1]

c. Ecrire un code Python permettant de simuler la loi de X

Avec des lois usuelles

Exercice 14 - (classique)
—+00

Pour n € N, on pose A\, = / e dx
0

1. Convergence de A,

a. Justifier que A, converge pour tout n € N



b. Déterminer la valeur de A\g, A1, A2. On pourra se référer a des résultats connus sur la loi exponen-
tielle.

c. En utilisant une intégration par parties, montrer que, pour n € N: \,11 = (n + 1)\,
En déduire que : Vn € N, A\, = n!

lﬂ:"e_gc siz >0

: |

Dans la suite, on pose : f,(x) =< ™
0 six <0

2. Montrer que f, est une densité de probabilité.

3. Si X,, est une variable aléatoire de densité f,, déterminer F(X,,) et V(X)) en fonction de n

Exercice 15 - classique (EML et Edhec, loi normale)

Soit A > 0. On pose f(z) = 22\ze N’ pour z > 0 et f(z) =0 pour x < 0
1. Montrer que f est une densité de probabilité.

2. Si X est une variable aléatoire de densité f, déterminer sa fonction de répartition notée F'x

1
3. a. Déterminer le moment d’ordre 2 d’une variable aléatoire Z suivant la loi normale N (O )

"2\
+o0 5
b. En déduire la valeur de l'intégrale / z2e M dx
0

1
c. En déduire que X admet une espérance et que E(X) = 3 g

4. Soit Y = AX?2. Montrer que Y suit la loi exponentielle de paramétre 1
(4—m)

Rappeler la valeur de E(Y') puis en déduire que X admet une variance et que V(X) = 75

Exercice 16 (Ecricome, loi uniforme)

Soit (X;)ien une suite de variables aléatoires indépendantes suivant toutes la loi ¢([0, 1]), uniforme sur [0, 1]
On note F' la fonction de répartition associée a cette loi.

On pose, pour n € N*, Z,, = max(Xy,... X,,) et on note F,, sa fonction de répartition.
1. Montrer que, pour z € R, F,,(z) = F(z)"
2. En déduire que Z,, est une variable aléatoire a densité et en déterminer une densité f,

3. Montrer que Z,, admet une espérance et une variance, et les calculer.

Exercice 17 - loi de Pareto (classique, EML, Edhec, Ecricome)

Soit a, b deux réels strictement positifs, et f,; la fonction définie sur R par :

0 six <b
Vr € R, fa,b(x) = ab® )
et siz>=b
1. Montrer que f,; est une densité de probabilité.
o fup est clairement | positive sur R
o fqp est continue sur | — oo, b| (fonction nulle) et sur |b, +oo[ (fonction puissance),

donc | continue sur R\{b}




+00 +00
° fap( / dx sous réserve de convergence de la derniere intégrale. Pour A > b,

<, a2 L e 1
. ot T = = b_b_“_ﬁ onc \ —ail xconvergeetvautb—a

+oo
Conclusion : fap(x)dx converge et vaut 1.
o0

De ces trois points : | f, est une densité de probabilité.

Dans la suite, on dira d’une variable aléatoire de densité f,; qu’elle suit la loi de Pareto P(a,b) de
parameétres (a,b)
On considére dans la suite une variable aléatoire X suivant la loi de Pareto P(a,b)

. Déterminer la fonction de répartition, notée F, p, de X

Pour z € R, F, p(x / fan(t)

e Pour x < b, F,,(x) =0 car fq est nulle sur | — oo, z]

ba
e Pour x > b, des calculs faits pour la question 1. on déduit : Fy ,(z / Jap(t)dt =1— —
0 six<b
donc : | F,u(x) = b\ ¢
1— <—> siz>=b
x
. . . ab
. Montrer que X admet une espérance si, et seulement si : a > 1 et, dans ce cas : E(X) = 1
a [e—

+o0
Comme f,p est nulle sur | — oo, b[, X admet une espérance ssi / tfa,p(t)dt converge.
b

a

“+oo +00 a “+oo 1
or / tfap(t)dt = / t—adt et on sait que l'intégrale de Riemann / t—adt converge si, et
b b b

+00
seulement si a > 1, donc par linéarité / tfap(t)dt converge si, et seulement si a > 1, soit :
b

X admet une espérance si et seulement si a > 1

et pour a > 1 et A > b (calcul d’une intégrale de Riemann, au facteur pres),

A A A
1 1 ab® 1 1
tf,p(t)dt = ab® —dt = ab® | — = —
/b Jaa(®) ¢ /b o ! { (a— 1)ta_1]b a—1 ) <ba_1 Aa_l)

ab® 1 ab
en faisant tendre A vers +oo :| E(X) = X =
a—1 b1 a-1
. . . ab?
. Montrer que X admet une variance si, et seulement si : a > 2 et, dans ce cas : V(X) = m
a— a—
+o0o +oo
X admet un moment d’ordre 2 ssi / 2 fop(x)dz = ab® / ta—_ldt converge, donc ssi (comme &
—0o0 b
la question précédente) :| a > 2 | et dans ce cas, par un calcul analogue a la question précédente :
1 1 ab?
E(X?) = ab” x =
(X5) a—2b2 a-—2




donc X admet une variance ssi a > 2 et : V(X) = E(X?) — B(X)? = —

ab? <(a —1)2—afa - 2)) I
(a—2)(a—1)2 et donc| V(X) =

donc V(X) =

5. Simulation informatique.

a. Soit U une variable aléatoire suivant la loi uniforme ([0, 1])
Montrer que bU~"/* suit la loi de Pareto P(a, b)

On remarque d’abord que U() =]0, 1] et donc U~Y/*(Q) =]1, +o0[, donc V > b
(on a utilisé 2% = e*"@)) on en déduit que P(V < z) = 0 pour z < b

pourm>b:P(V<x):P<U1/“<§):P<U><é> ):1—FU<<E> >
b T T
et0<9<1doncFU<<é> >:<9>

x x x

0 siz<b
Finalement : Fy(z) = P(V < x) = b\ ¢
1-— <—> siz>0b

X

et donc| V suit la loi de Pareto de parametres (a,b)

b. En déduire une fonction Python d’en téte def Pareto(a, b): permettant de simuler une réalisation
de la loi de pareto P(a,b)
import numpy as np
import numpy.random as rd

def Pareto(a, b):
return b*rd.rand () **x(-1/a)

10



Exercice 18 - loi logistique standard et opérations sur les variables aléatoires (classique)

On pose, pour x € R, F(z) = e
e

1. Etudier les variations de F' et préciser ses limites en —oo et en +00
Justifier que F' peut étre considérée comme la fonction de répartition d’une variable aléatoire a densité
X, dont on précisera une densité f (on montrera que F' vérifie les propriétés caractéristiques d’'une
fonction de répartition).
La loi de X est appelée loi logistique standard.

2. On considere une variable aléatoire T' suivant la loi exponentielle de parametre 1, et on pose W =
In(exp(T) — 1)
a. Rappeler la fonction de répartition Fp de T'
b. Montrer que W suit la loi logistique standard.
3. On considére une variable aléatoire U & densité suivant la loi uniforme sur ]0, 1]

a. Montrer que V = —In(1 — U) suit la loi exponentielle de parametre 1
U
b. Déduire de la question 2.b. que Y =1In <ﬁ> suit la loi logistique standard.

c. En déduire une instruction Python (en une ligne) permettant de simuler la loi logistique standard.

4. On suppose que X; et X5 sont deux variables indépendantes de méme loi que X (loi logistique stan-
dard). On note M = max (X7, X3)
Montrer que M est une variable a densité, et déterminer une densité associée.

5. On pose Z = | X| avec toujours X suivant la loi logistique standard, de fonction de répartition F'x = F
On note Fz la fonction de répartition de la variable aléatoire Z

a. Soit z > 0. Exprimer P[Z < z] a l'aide de F et de x

b. En déduire que Z est une variable a densité et déterminer une densité associée.

Quelques extraits d’annales

Exercice 19 (Ecricome) Soit g la fonction définie sur R par :

0 sixz <0
Ve eR, g(x)=

ze ¥ siz>=0

1. Etude de la fonction ¢

a. Montrer que g est dérivable sur | — oo, 0] et sur |0, +o0]. Est-elle continue en 07 Est-elle dérivable
en 07

b. Donner le tableau des variations de g sur [0, +o0c[. On précisera la limite de g en 400
c. Etudier la convexité de g

2. Etude de variables aléatoires
a. Montrer que la fonction g est une densité de probabilité.

On notera Y une variable aléatoire dont une densité est la fonction g, et dont la fonction de
répartition est notée GG

b. Sans calcul, montrer que G est de classe C! sur R

) 0 siz <0
c. Montrer que, pour tout réel z, G(z) =

l—e*(1+z) siz>0
d. Montrer que la variable aléatoire Y admet une espérance que l'on calculera.

3. On considére la variable aléatoire Z = ¥

a. Déterminer la fonction de répartition H de la variable aléatoire Z
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b. En déduire que Z est une variable aléatoire a densité, et déterminer une densité de Z

c. La variable aléatoire Z admet-elle une espérance 7

Exercice 20 (Edhec)

On consideére deux variables aléatoires indépendantes X et Y définies sur un espace probabilisé (2, A, P)
On suppose que :
e X est une variable a densité,

1
e la loi de Y est donnée par : V() ={-1,1}, P(Y =1)=P(Y =-1) = 3

On rappelle que l'indépendance de X et Y se traduit par les égalités vraies pour tout € R :
P(X<zln[Y =1)=P(X<z)P(Y=1) et P(X<z|Nn[Y=-1))=PX <x)P(Y =-1)

On pose Z = XY et on admet que Z est une variable aléatoire sur le méme espace probabilisé.
Pour une variable aléatoire A, on notera F4 sa fonction de répartition.

1. En utilisant le systéme complet d’événement {[Y = 1],[Y = —1]}, montrer que :
1
Vo € R, Fz(x)zi(Fx(x)—Fx(—x)—i-l)

En déduire que Z est une variable aléatoire a densité, et exprimer une densité f; de la loi de Z en
fonction d’une densité fx de la loi de X

2. On suppose que X suit la loi normale centrée réduite. Montrer que Z suit aussi la loi normale centrée
réduite.

3. On suppose dans cette question que X suit la loi uniforme ([0, 1])
a. Rappeler I'expression de Fx(z) pour € R et donner une densité fx de la loi de X
b. Montrer que Z suit une loi uniforme que ’on précisera.

4. On suppose dans cette question que X suit la loi exponentielle £(1) de parametre 1
a. Rappeler I'expression de Fx(z) pour € R et donner une densité fx de la loi de X
b. Calculer E(Z)

c. Exprimer Z? en fonction de X. En déduire que Z admet une variance et calculer V(Z)

1
d. Montrer que la loi de Z a pour densité f; définie par : Vo € R, fz(z) = §e_|$|.

e. Rappeler les valeurs de E(X) et de V(X))
+oo +oo
En déduire successivement les valeurs des 'intégrales / z2e dz et / e 1"ldz
0 —o0
Retrouver alors la valeur de V(Z) par un autre calcul que celui fait dans la question 4.c..
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Exercice 21 (Ecricome)

On suppose que toutes les variables aléatoires présentées dans cet exercice sont définies sur le méme espace
probabilisé.

Partie A
1
P si t>1
Soit f la fonction définie sur R par : Vt € R ft) = 0 s —-1<t<l1
1
3 si t<—1

1. Démontrer que la fonction f est paire.

N

+oo
. Justifier que 'intégrale / f(t)dt converge et calculer sa valeur.
1

3. a. A l’aide d’un changement de variable, montrer que :

-1 A
pour tout réel A > 1 : / f(t) dt = / f(u) du
—A 1

-1
En déduire que 'intégrale / f(t)dt converge et donner sa valeur.
—0o0

b. Montrer que la fonction f est une densité de probabilité.

4. On consideére une variable aléatoire X admettant f pour densité. On note F'x la fonction de répartition
de X )
1
a. Montrer que, pour tout réel = : Fx(z) = 5 si —l<z<l1
1 . S
1-— 22 si z2>1

b. Démontrer que X admet une espérance, puis que cette espérance est nulle.
c. La variable aléatoire X admet-elle une variance ?
5. Soit Y la variable aléatoire définie par ¥ = | X|
a. Donner la fonction de répartition de Y, et montrer que Y est une variable aléatoire a densité.
— siz>1
b. Montrer que Y admet pour densité la fonction fy définie par : fy(z) =< *
0 sinon

c. Montrer que Y admet une espérance et la calculer.
Partie B

6. Soit D une variable aléatoire prenant les valeurs —1 et 1 avec équiprobabilité, indépendante de la
variable aléatoire Y

Soit T' la variable aléatoire définie par T'= DY

D+1
a. Déterminer la loi de la variable Z = T+ En déduire 'espérance et la variance de D

b. Justifier que T" admet une espérance et préciser sa valeur.
1 1
c. Montrer que pour tout réel z : P(T < z) = §P(Y <)+ §P(Y > —x)
d. En déduire la fonction de répartition de T
7. Soit U une variable aléatoire suivant la loi uniforme sur [0, 1[ et V' la variable aléatoire définie par :

1
Ve——
VvV1-U

a. Rappeler la fonction de répartition de U

b. Déterminer la fonction de répartition de V' et vérifier que les variable V' et Y suivent la méme loi.

8. Ecrire une fonction en langage Python, d’en-téte def T(n), qui prend un entier n > 1 en entrée, et
renvoie une matrice ligne contenant n réalisations de la variable aléatoire T'
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