ECG 2 - Mathématiques appliquées Mathématiques DS n°4 - 24 janvier 2026

Sujet 1 : type Ecricome - EML

Dans tout le sujet, concernant les codes Python, on supposera les importations suivantes faites :

import numpy as np
import numpy.random as rd

Corrigé Total sur 84 points - dont rédaction/présentation/clarté : 3 points

Exercice 1 24 points

Partie 1 : loi de Pareto

0 six <1
On pose, pour a > 0 et tout z € R: fu(x) =
W S1 T > 1
Toutes les variables seront supposées définies sur le méme espace probabilisé ( €2, A, P ). Pour une variable aléatoire

X, on notera Fx sa fonction de répartition, et on notera Rxy = 1 — Fx la fonction définie par :
Vx € R, Rx(x):1—Fx($)
1. Montrer que, pour tout o > 0, f, est une densité de probabilité. 1,5 points

e f, est positive sur R
e f, est continue sur | — oo, 1[ (fonction nulle) et sur |1,+oo[ en tant que fonction puissance (quelconque)
donc f, est continue sur R\{1} (donc continue sur R sauf éventuellement en un point)

/ fa(t)dt = 0 (I'intégrale converge et vaut 0) car f, est nulle sur | — oo, 1]

1 1
Pour z > / fa t)dt = / ozt*afldt:[—t*a] =l—-—etl—— ——1lcara>0
% % x—+00
+00
En conclusion, fa( )dt converge et vaut : / fa(t)dt + fat)dt =1
— 0o

de ces trois points, on déduit que f, est une densité de probab1l1te

La loi associée & cette densité est appelée loi de Pareto de parameétre « et on dira qu’une variable aléatoire
de densité f, suit la loi P(«) (loi de Pareto).

2. Soit X une variable aléatoire suivant la loi de Pareto P(«), avec o > 0

a. Montrer que X admet une espérance si, et seulement si « > 1. Calculer alors F(X) 1,5 points

+00 “+oo 1

Par définition, X admet une espérance si et seulement si / tfa(t)dt = « / t—adt converge (car
—0o0 1

fa est nulle sur | — oo, 1])

donc d’apreés le critére de convergence des intégrales de Riemann, X admet une espérance si et seulement

400 1
si > 1 et dans ce cas:E(X):a/ —dt
1t
tooq trati ® 1 1 ]° 1
et pour o > 1,/ —dt = lim = lim 1- = (car « > 1 =
.t ztoo |[—a+1];  aotca—1 o, a-—1
1> 0) donc| B(X)=—2
a— onc =
a—1
b. Montrer que X admet une variance si et seulement si o > 2, et vérifier que, dans ce cas, 2 points
V(X) = ——
~(@-1)*(a-2)



X admet une variance ssi X admet un moment d’ordre 2,

+oo +00
donc si et seulement si / 2f(t)dt = a /

—00 1
donc, comme pour la question précédente, cette derniére intégrale converge si et seulement si o > 2, et

pro dt converge

le cas échéant elle vaut P
donc X admet un moment d’ordre 2 si et seulement si @ > 2 et dans ce cas, d’aprés le théoréme de
«
transfert £ (XQ) =
a—2

donc d’aprés la formule de Keenig-Huygens, X admet une variance si et seulement si @ > 2 et dans ce

(03 (% 2 alo — 2_a2a_
cas : VIX) = B (XF) = BX)" = o= - ( ) ( (a i)2)(oz _(1)2 2

2 —a(a? -
_ afa® —2a+1) — ala” - 2a) d’on le résultat | V(X) = ;
(a—=2)(a—1)?

a—1

3. Soit X une variable aléatoire suivant la loi de Pareto P(«), avec o > 0

a. Pour tout réel z, déterminer une expression de Fx(x) et de Rx(z) (on distinguera les cas x > 1 et
x <1). 1,5 points

xT
Puisque f, est une densité, Fx(x) = / f(t)dt et puisque f, est nulle sur | — oo, 1]
—00

donc d’apres les calculs faits en question 1,

0 six <1 1 six <1
Fx(m') = 1 de fait Rx(.%') = 1
1—-— six>1 — six>1
r® r®
a (0%
b. Montrer que, pour a > 1 et b > 0: Pxsq(X >a+ b) = (a n b> 1,5 points
Par définition (des probabilités conditionnelles car a > 1 = P(X > a) = R(a) > 0),
1
P(IX >a+bN[X >a P(X>a+b Rx(a+b Ty a®
P >t E IN[X >a) _ P ) _ Rxlot) _mm __a
P(X >a) P(X >a) Rx(a) - (a+ D)

donc P[X>a](X>a+b):< a >

a+b
c. Déterminer lim Pix.q(X > a+b) 1 point
a—+00
1 1 1
Puisquea#O,L:gx—b:—bet lim 5 =1 donc lim S
at+b a 142 142 a>tool42 a—+oo a +b

«
o . . a qa . . o
de plus X — X est continue donc agrfoo (a T b) =1%=1, 1ie all)rfoo Pixsq(X >a+0b)=1

d. En supposant que X désigne la durée de vie d’'un composant, que signifie cette valeur limite? 1 point

Cela signifie que plus le composant a une durée de vie longue, moins il a de chance de tomber en panne :
s’il a vécu @ unité de temps avec a assez grand, la probabilité qu’il dure a + b avec b > 0 quelconque est
proche de 1. Cela correspond & une durée de vie avec rajeunissement, mieux qu’une loi exponentielle.

Partie 2 : simulation informatique

4. Soit U une variable aléatoire suivant la loi uniforme ¢ ([0,1[) et A € R%

1
Montrer que la variable DY In(1 — U) suit la loi exponentielle de paramétre A 2,5 points

1
Voir ’exemple du cours. On pose ¥ = -3 In(1-0) :

Soit y € R alors (on utilise A > 0 et la croissance d’exponentielle et In)



1
ng@)—xln(l—U)gy@)—ln(l—U)g)\y@)ln(l—U)2—)\y<:>1—U>e”\y<:>U<1—e’)‘y

donc P(Y <y)=P(U <1—e M) ie Fy(y) = Fy(l—e ™)

1" cas :y > 0 alors —AyéOdoneOée_’\yg1d0nc121—e_>‘y<0

et donc Fiy(l—e M) =1—eM car Fy(z)=asiz e [0,1] ie. Fy(y)=1—e W
2°M€ cas :y < 0 alors de méme 1 — e < 0 et donc Fyy(1—e ™) =01ie Fy(y)=0

0 sioy<O0
finalement Fy (y) =

1—e ™ si y>0

on retrouve pour Y la fonction de répartition de la loi exponentielle de paramétre A donc | Y < E(A)

5. Soit Y une variable aléatoire suivant la loi exponentielle de paramétre A > 0 2 points
Montrer que la variable e¥ suit la loi de Pareto de paramétre X

SiY < E(N\) et Z=e", on constate que Y > 0 donc Z > 1
Pour z < 1 on adonc P(Z <x)=0et pourxz >1:
Z<rxee <reY < In(z) par croissance de In et exp
1
donc P(Z < z) = P(Y < In(z)) i.e. Fz(z) = Fy(In(z)) = 1 — @ =1 - — car o > 1= In(z) >0

et Y — &()N), on retrouve donc la fonction de répartition de la loi de Pareto de paramétre A trouvée a la

question 3.a. donc| Z suit bien la loi de Pareto de paramétre A

6. En déduire une commande Python permettant de simuler une réalisation de la loi de Pareto de paramétre A
1,5 points

Avec I’ import rd.random as rd et rd.random(), on simule la loi uniforme sur [0,1] donc d’aprés les
— = P(A
(1—=0U)VA W

alors z=1 /(1-rd.random()) * *(1 / lambda) simulera une réalisation de P(\), pour lambda donné.

1
questions précédentes puisque : Y = DY In(1 —U) < E\) et donc Z =¥ =

Partie 3 : questions de convergence

On suppose dans cette partie que « est un réel strictement supérieur & 2 et X une variable suivant la loi de Pareto
de paramétre «

On considére une suite (Xy), oy de variables aléatoire indépendantes et de méme loi que X (loi de Pareto de
paramétre a > 2).

n
On pose, pour n € N*, U,, = min (Xq,...,X,) et T, = anXk ol ¢, est un réel.

k=1
7. a. Déterminer la valeur de ¢, pour que : Yn € N*, E(T,) =1 1,5 points
n n
T .o o) no
Par linéarité de l'espérance, F (T},) = ¢, Z E(Xy) =cp T X
k=1 k=1
d doit avoi a1 ! E(T,) =1
onc on doit avoir | ¢, = = our que =
" no nE(X) potrd "
b. On suppose ¢, choisi tel que E (T},,) = 1 pour tout n € N* 2 points
Calculer alors V' (T5,) et sa la limite quand n tend vers +oo
n
V(T,) =V <Z Xk> par propriété
k=1
et comme X1,...X,, sont mutuellement indépendantes et de méme loi que X :
- V(X)
V(T,) =c2 Z V (Xg) = EnV/(X) soit | V (Ty) = nE(X)? d’apres la question précédente

k=1




et donc| lim V(T,) =0 [puisque V(X) et E(X) ne dépendent pas de n

n—-+4o0o

8. Soit n € N*
a. Déterminer P (U, > z) pour z < 1 1 point

Xi,...,X, suivant des lois de Pareto, elles sont a valeurs dans [1, +oo[ (i.e. Vk € [1,n], P(Xx < 1) =0
et donc P(X; >1)=1)

donc le minimum est forcément plus grand que 1, i.e.| P (U, >z) =1 |pour z <1

1 no
b. Montrer que, pour x > 1, P (U,, > x) = <—> 1,5 points
x
Pour x e R,z > 1,min(Xy,...,. X)) 2z X;>2xet Xo>xet ... X, >

donc [U,, > z] ﬂ (X% > 2| donc P((U, > z) =P ﬂ[Xk>:v]>

=
Il
—

n n 1\ @
soit P (U, > x) H Rx(z)" = <—> = on trouve bien | P (U, > z) = <E>

c. Reconnaitre alors la loi de U, 2 points
Justifier que U,, admet une espérance E (U,,) et une variance V (U,,) et montrer que

lim E(U,) =1 et nErJrrlooV (Un) =0

n—-+4o0o

On reconnait la fonction R d’une loi de Pareto de paramétre na, plus précisément

0 siz <1
on déduit de 8.b. : Fy, () = P(U, < z) = 1 et donc | U, — P(n«)
1-— siz>1
ané
de plus n € N* et a > 2 donc na > 2 et donc U,, admet un moment d’ordre 2 , donc une espérance et

une variance.

1
et d’apres les résultats de la question 2., E (U,) = e _ T donc| lim E(U,) =1 |
noa —1 1— P n—+00
¢V (Up) ne 1 ! d lim V (U,) =0
e = = onc im =
" (na—1)2(na—2)  (na)? (1- L)Q (1-2) n—+00 "
no no

Exercice 2

On note & = (ey, €2, e3) la base canonique de R?
On considére endomorphisme f de 'espace vectoriel R? représenté dans la base 2 par la matrice A donnée par

3 -3 1
A=|1 0 0
0 1 0

I3 (resp. 0 4, r) ) désignera la matrice identité de .#3(R) (resp. la matrice nulle), représentant 1’'endomorphisme
identité id (resp. 'endomorphisme nul 0 ¢ gs) ) de R? dans une base quelconque.

Partie I : étude de f
1. a. Calculer (A — I5)* 1,5 points



Par le calcul on trouve :

2 -3 1 2 -3 1 1 -2 1

(A-I3*=[1 -1 o0 1 -1 0o|=[1 —21

1 -1/ \o 1 -1 1 -2 1

-3 1 1 -2 1 00 0

puis (A — I5)° -1 0 1 =2 11=1]0 0 0

1 -1/ \1 -2 1 00 0
doncAI?,—

b. En déduire que f est un isomorphisme et donner une expression de la matrice de f~! en fonction de
I3, A et A? 2,5 points

En développant la relation précédente, on obtient :

(A —I3) (A% —2A + I3) = 03 donc A% —24% + A — A2 + 24 — I3 = 03 soit A3 — 342 + 34 = I3
donc A (A2 —3A+ 3[3) =13

donc A est inversible, et A~! = A% — 34 + 313

donc| f est un isomorphisme |, et en définissant g par A~ = My(g)

alors M (F)Ms(g) = Ma(@)Mon(f) = Is
donc par propriété sur les matrices de composées d’applications linéaires, Mygz(go f) = Myx(f o g) =
My(id) donc par caractérisation d’une application linéaire go f = fo g =id

donc g = fletdefait| Mp(f})=A"1=A%-3A+3L;

2. Montrer que A admet une seule valeur propre et que le sous-espace propre associé est de dimension 1

(X —1)3 est un polynome annulateur de A et admet 1 pour unique racine, donc Sp(A4) C {1} 2,5 points
on résout alors le systéme linéaire AX = X < (A — I3)X = 03 d’'inconnue X = *(z; zo x3):

2 =3 110 1 =1 0 (0 )\ L+ Ly 1 -1 0|0
AX=Xe |1 -1 0(0|e]| 2 =3 10| LivLy |0 -1 10| LyeLy—2L
0 1 =110 0 1 =110 0 1 —1]0
1 -1 0|0 T1 = Ty
10 -1 110 &l ay=a3 ©Xe{(z1 21 :),21 R}
0 0 0|0 ) Ly Lo+ L3

il existe des solutions non nulles, donc 1 € Sp(A) et donc| Sp(A) = {1} |et| Ei(A)= Vect (‘(1 1 1))

qui est bien de dimension 1 car il s’agit d’'un Vect composé d’un seul vecteur non nul.

3. A est-elle diagonalisable 7 1 point

A n’est pas diagonalisable |car sinon elle serait semblable et donc égale & la matrice identité, ce qui n’est

pas le cas :
on suppose A diagonalisable, alors A = PDP~! on D = I car Sp(A) = {1} et P inversible,
donc A = PI3P~! = PP~ = I3, ce qui est faux.
4. Soit ey = (f —id) (e3) et ] = (f —id) ()
a. Calculer ¢} et €] 1 point
On utilise le lien application linéaire- matrice f((z,y,2)) = (a,b,c) & A'(x y 2z)="(a b c) avec
Mg(f —id) = Myp(f) — Mg(id) = A — I3



or (A—=I3)'(0 0 1)=%1 0 —-Det(A-I31 0 —-1)=*%2 1 0)-"(1 0 —-1)=%1 1 1)

donc| €5 = (1,0,—1) et €] = (1,1,1)

b. Montrer que %’ = (e'l, e, 63) est une base de R3
Soit (A1, Ao, Az) € R? Aje] + Aaeh 4+ Azes = (0,0,0)
A1+ Ao =0
alors ¢ )\ = (0 donc Ay =0puis Aya=0et \3=0

AM—X+X3 = 0

1,5 points

donc %' est une famille libre de R3, de plus Card ' = 3 = dim(R?) donc

P est une base de R?

c. Déterminer la matrice T de f relative & la base %’ 1 point
On écrit donc f(e}), f(eh), f(e3) dans la base %’
or d’aprés 2. f(e}) = €| et d’aprés 4.a. f(e)) =€) + e} et f(e3) = e+ e3
1 1 0
donc| T=Mzm(f)=| 0 1 1
0 01
d. Donner la matrice de passage P de B vers %’ et une relation entre P,T et A 1,5 points

Par définition la matrice de passage de % vers %’ correspond a la « lecture » des vecteurs de %’ dans

1 1 0
la base % donc P = 1 0 0
1 -1 1

et par propriété de changement de base pour une application linéaire : My (f) = Py My (f) Py .2

1

donc par définition des matrices, et car par propriété Py _,g = P,

5. On note B=A — I3

-1
a. Montrer que Vn € N, A" = Is+nB + %B2

n
On procede par récurrence, pour n € N, on pose A™ = I3 +nB + 5

Initialisation : P(0) est vraie < A =I5+ 0x B+ 0 x B?> & I3 = I3
ce qui est vrai donc P(0) est vraie

Heéréditeé : soit n € N, on suppose P(n) vraie

-1
alors par hypothése de récurrence A™ = Is +nB + MBQ

—1
donc A" = A"A = A"(B + I3) = (Is + nB + %32)(3 +I3)

-1 -1
:B—l—nBz—i—%B?’—i—[g—i—nB—i—MBQ

zlg+(n+1)B+<n+w

> on trouve | A = pTP~!

2 points

(n— 1)32

B? car B® = (A — I5)® = 03 d’apres 1.

nn—1+2) n(n+1)

1 -1 2 -1
donc An+1:—73+(”+1)B+WBQ car n+n(n ): n+n2(n )

donc P(n + 1) est vraie d’ou I’hérédité et donc par théoréme de récurrence,

(n—1)

Vn € N, P(n) est vraie i.e. A" =I5 +nB+ o 5 B?

2 2



Partie I1

b. En déduire trois suites réelles (o), en s (Bn)pnen €6 (Yn)nen telles que : 1 point

VneN, A" =a,l3+ A+ v, A

Comme B = A — I3,, on déduit de la question précédente que pour n € N :

n—1)

A":13+n(A—[3)+7”(”2_ YA 1) = L4 nd—nly + ™ (42 =24+ 1)
= (1—n+@>13+(n—n(n—1))A+WA2
Orl_n+n(n—1) _ —2(n—1)+n(n—1) _ (n—2)(n—1)
’ 2 1 ’ 1 2
donc A" = %13 +n(2-n)A+ 7"("2_ ) g2
d’ot1 le résultat avec | a, = W, Bn=n(2-n), Y= n(n2— 1)

Nota bene : on peut vérifier que cette relation est valable pour n =0,n =1et n =2

: résolution d’une équation

Dans cette partie, on cherche & résoudre 1’équation

£: M?*=A dinconnue M € .#3(R)

On suppose dans un premier temps que cette équation admet des solutions et que M € .#3(R) est une solution de
I'équation &
On note g '’endomorphisme représenté par M suivant la base %
Ainsi, on remarquera que g°> = gog = f

6. En utilisant un polynéme annulateur de M, montrer que Sp(M) C {—1,1} 1 point

7.

Puisqu’pn suppose que M? = A alors (M? — I3)? = 03 donc (3:2 — 1)3 est un polynéme annulateur de M,
or (x2—1)3:0<:>(:62—1)20<:>x:—1 ouzx =1,

donc les racines du polynéme annulateur sont —1 et 1, donc | Sp(M) C {—1,1}

a. Montrer que, si V' est un vecteur propre de M, alors V' est un vecteur propre de A 1 point

Si V est vecteur propre de M alors MV = uV, avec V # 031 et p € R
donc M?V = M(MV) = M(uV) = uMV = 1>V ie. AV = 12V

donc| V est aussi un vecteur propre de A | associé a la valeur propre >

b. En raisonnant sur la dimension du sous-espace propre de A, en déduire que :

i.

ii.

M ne peut pas avoir deux valeurs propres différentes 1,5 points

Si M admet deux valeurs propres distinctes, on peut trouver deux vecteurs propres linéairement
indépendants V; et Vo de M (deux vecteurs propres associés a des valeurs propres distinctes forment
une famille libre)

ces vecteurs étant aussi des vecteurs propres de A, on aurait : V; et V5 dans E1(A) ('unique sous-
espace propre de A) et (V3,V4) libre, donc dim E1(A) > 2 ce qui n’est pas possible.

donc notre hypotheése de départ est fausse, donc | M admet au plus une seule valeur propre.

si M admet une valeur propre, alors M admet une unique valeur propre, et que le sous-espace
propre associé est de dimension 1 1 point

Il s’agit du méme raisonnement, comme nous venons de le voir, si M admet une valeur propre, il
n’en admet pas d’autre, donc il admet un seul sous-espace propre.

Si ce sous-espace était de dimension > 2, alors on pourrait trouver une famille libre ( V1, V5 ) formée
de vecteurs propres de M, donc de A



on aurait & nouveau F1(A) de dimension > 2 ce qui n’est pas possible

donc | si M admet une valeur propre, il admet un seul sous-espace propre, de dimension 1

8. Montrer que f (g (e'l)) =3 (e’l) =g (e'l). En déduire qu’il existe un réel u tel que : 2 points
/
g

—

61) =pe| et p? =1

Puisque f = 92,f (g (6'1)) = 92 (g (6,1)) = 93 (6,1) =g (92 (6/1)) =g (f (6/1))

et comme f (€}) = €] on obtient f(g(e})) = g(e]) i.e. le résultat cherché.

donc par analogie avec 1’écriture matricielle, en notant U = ¢ <1 1 1) ona AMU = MU

donc MU € E;1(A) = Vect(U)
donc dp € R,MU = uU, i.e. p est valeur propre de M et U est un vecteur propre associé donc d’aprés 6.

1€ {—1,1} et donc p? = 1, donc avec 'application linéaire, | 3u € R, g(e}) = pe} avec p? =1

Quitte a changer g en —g (qui est une autre solution de i ), on supposera dans la suite que :

g(eh) = e
Des questions précédentes, on obtient que M admet une et une seule valeur propre égale & 1 , et son sous-
espace propre associé est de dimension 1

9. Justifier que M + I3 est inversible, puis que (M — 13)3 = 0.z3(R) 2 points

Puisque Sp(M) = {1} alors —1 n’est pas une valeur propre de M et de fait | M + I3 est inversible

de plus, comme (M?* — 13)3 =03,0na:((M—1I3)(M+13)* =03
donc (M — I3)* (M + I3)* = 03 puisque (M — I3)(M + I3) = (M + I3)(M — I5)

(M + I3) étant inversible, elle est simplifiable donc | (M — I3)* =0

10. On note N = M — I3 et on rappelle que B=A — I3
a. Montrer que : N> 4+ 2N = B 1 point

M? = A donne (N + I3)? = B+ I3 soit N>+ 2N + I3 = B+ I3 et donc| N>+ 2N =B

b. Montrer que 4N? = B? et en déduire une expression de N en fonction de B et de B?, puis trouver trois
réels a,b,c tels que : M = al3 + bA 4 cA? 2,5 points

Comparer le résultat avec celui obtenu dans la question 5.b.

En élevant au carré 'égalité (N2 + 2N)2 = B?, comme (N2 + 2N)2 = AN? 4+ 4N3 + N* = 4N?

car N® = 03 (et donc N* = 03), on trouve | 4N? = B?

1 1 1
or d’aprés 10.a. N> 4+ 2N = B donc 2N = B— N? =B — ZB2 et donc N = 53 — -B?

8
1 1 1 1 1
orN:M—IgetB:A—[gdoncM—Igz§(A—[3)—§(A—13)2:—513+§A—§(A2—2A+13)
1 1 1 1 1 3 3 1
done M =1I3— I3+ —-A— I3+ -A—-A%ie| M==I;+>-A— -A>
one 8T st gA gt AT gate g3 T 1773
d’ofllerésultatEwecazé,b:§etc:—l
8 4 8

Il s’agit des coefficients trouvés dans la question 5.b. en remplagant n par 1/2 | (la formule semble

donc valable plus largement que pour des puissances entiéres et positives).
c. Vérifier par un calcul que (a13 +bA + cA2)2 =A 2 points

On développe (CLIg + bA + cAQ)2 = a®I3 + abA + acA? + baA + b* A% + beA3 + caA? + cbA® + P A*
donc (als + bA + CA2)2 = a%I3 + 2abA + (2ac 4 b?)A? + 2bc A3 + 2 AY



or d’aprés la question 5.b. (ou 2. pour A%), A3 =342 — 34+ I3 et A* = 315 — 8A + 642

donc (al3 + bA + CA2)2 = a’I3 + 2abA + (2ac 4 b*)A? + 2bc(3A% — 3A + I3) + (313 — SA + 6A%)
= (a® + 2bc + 3¢*) I3 + (2ab — 6bc — 8¢*) A + (2ac + b* + 6bc + 6¢2) A

6 3
or d’apreés les Valeli;s delg,belt c,c;22+2bc+3c2:a—§+a:06 -
2ab—6bc — 8% = — 4+ — — = == =1et2 b2 1 6be 162 = —— + 2 %
a C & 32—1-32 3~ 3 et 2ac+ 0" 4 6bc + 6¢ 64+16 32+

on trouve donc bien | (al3 + bA + cA2)2 = A

Nota bene

64

6 18-18

32

0

. il s’agit ici de la synthése du raisonnement, a la question précédente, nous avions trouvé

que c’était la seule solution possible, mais comme il ne s’agit pas d’un raisonnement par équivalence, il
faut la vérifier.

Remarque : on pouvait aussi utiliser A = B + I3 et poursuivre le calcul (en utilisant B3 =B*= 0)

11. Conclure sur les solutions de £

1,5 points

Avec les hypotheéses précédentes, on a trouvé que 'unique solution était celle de la question 10.b., mais on
avait considéré que la valeur propre était positive (en changeant g en —g, suivant la remarque de la question
8.). On remarque aisément que l'opposée de cette solution est également solution d’apres le calcul de la
question 11. (le — disparait)

finalement | &£ admet donc deux solutions qui sont donc als + bA + cA? et — (afg + bA + cAQ)

Remarque : pour bien faire il faudrait montrer que ces deux solutions ne sont pas égales.

Exercice 3 - Edhec 2020

Soit m un entier naturel non nul et p un réel de ]0;1[. On pose g =1—1p
On dispose de deux urnes, I'urne U qui contient n boules numérotées de 1 & n et 'urne V' qui contient des boules
blanches en proportion p
On pioche une boule au hasard dans U et on note X la variable aléatoire égale au numéro de la boule tirée.

Si X prend la valeur k, on pioche k£ boules dans V', une par une, avec remise & chaque fois de la boule tirée, et on
appelle Y la variable aléatoire égale au nombre de boules blanches obtenues.

1. Dans le cas ol n = 1, reconnaitre la loi de Y

23 points

1 point

Dans le cas o n = 1, X ne prend que la valeur 1. On pioche donc une boule dans I'urne V', boule qui a une
probabilité p d’étre blanche. Ainsi, Y prend la valeur 1 avec la probabilité p, et 0 avec la probabilité 1 — p

Autrement dit,

lorsque n = 1, Y suit une loi de Bernoulli de paramétre p

On revient au cas général.

2. Reconnaitre la loi de X et donner son espérance et sa variance.

1 point

Il y a une boule portant chaque numéro entre 1 et n. Chaque numéro a donc la méme probabilité d’étre tiré.

par conséquent,

d’apres le cours, on a alors | E(X) = et| V(X)=

X suit une loi uniforme dans [1,n]

n+1 n?—1

2

3. Soit k un élément de [1,n]. Reconnaitre la loi de Y, conditionnellement & I’événement (X = k), et en déduire,
en distinguant les cas 0 <i < k et k < i, la probabilité P x_g) (Y = 1)

1,5 points

Si I’événement (X = k) est réalisé, alors on tire k& boules dans I'urne V. Dans ce cas, la variable aléatoire Y
compte donc le nombre de succes (tirer une boule blanche) lors d’une succession de k épreuves de Bernoulli
identiques et indépendantes, avec une probabilité de succes égale a p



par conséquent, la loi de Y conditionnellement & I’événement (X = k) est une loi binomiale B(k,p) (et on ne
peut obtenir strictement plus de k succes)

k

.)#%” si0<i<k
7

ainsi, pour tout i € N, on a :| Px_p)(Y =1i) = (
0 sit>k

. On rappelle les commandes Python suivantes qui permettent de simuler des variables usuelles discrétes :
e rd.randint(a,b+1) simule une variable aléatoire suivant la loi uniforme sur [a, b]

e rd.binomial (n,p) simule une variable aléatoire suivant la loi binomiale de paramétres n,p

e rd.geometric(p) simule une variable aléatoire suivant la loi géométrique de paramétre p

e rd.poisson(a) simule une variable aléatoire suivant la loi de Poisson de paramétre a

a. Compléter le script Python suivant afin qu’il permette de simuler les variables X et Y 1 point

def simulXY(n,p): Il suffit de simuler les lois déterminées lors des questions 2. et 3. donc

X= X=rd.randint(1,n+1) et Y=rd.binomial(X,p) et de renvoyer le résultat

Y= souhaité : return X,Y (ou seulement Y qui est plutot la variable a laquelle
return

on s’intéresse ici)

b. Ecrire un programme Python qui calcule la moyenne de 1000 simulations de la variable aléatoire Y
Comment peut-on interpréter le résultat ? 1,5 points

1
Il faut choisir n et p, on prend icin = 10 et p = 3

Considérant que notre fonction précédente renvoie seulement Y (sinon on prend seulement le deuxiéme
résultat avec simulXY(10,1/3) [1]):

np.mean ([simulXY (10,1/3) for n in range(1000)]

Le résultat doit nous donner une estimation de ’espérance de Y

a. Justifier que 'ensemble Y (€2) des valeurs prises par Y est égal a [0, n], puis montrer que : 2 points
1 — g™
P(Y = 0) = q(1—q")
n(l—q)

Si ’événement (X = k) est réalisé, alors Y peut prendre les valeurs de 0 a k. Or, X peut prendre les
n

valeurs de 1 & n. Donc Y (Q) = U [0, k], c’est-a-dire | Y (22) = [0,n]
k=1

alors, d’apres la formule des probabilités totales, avec le systéme complet d’événements (X = k)j<p<n,
n
ona:P(Y =0)=)Y P(X=kPx_(Y =0)
k=1

n

1(k 1 «
donc d’aprés les résultats des questions 2. et 3. (car 0 < k) P(Y =0) = Z - <0> Ok = = qu
k=1

on reconnait alors une somme de termes d’'une suite géométrique de raison ¢ avec g # 1

_ . n+l _.n
n —q nil—gq

b. Ecrire, pour tout ¢ de [1,n], la probabilité P(Y = i) sous forme d’une somme de n — i + 1 termes que
I’on ne cherchera pas & simplifier. 2 points

Soit i € [1,n] quelconque,

de méme, par la formule des probabilités totales (systéme complet d’événements (X = k)i<k<n) °
n n

1
PY =i)= E P(X =k)Px—py(Y =1) = E EP(X:k) (Y =4i) d’apres la question 2.
k=1 k=1
1
donc P(Y =1i) = E —Pix—p)(Y =) car Px—_)(Y =1i) = 0si k <i (cf question 3.) : ce qui donne,
n
k=i

10



7.

"1 /(k 1 [k
d’apres la question 3. (cas i < k:| P(Y =1i) = —( )pzqk_z = — Z <.>plqk_z
‘n \ 1 n 4 \1
k=1 k=1
. . . L. |k k-1
. Soit 7 et k deux entiers naturels tels que 1 < i < k < n. Montrer I'égalité : ¢ =k
1 i1—1
Soit 7 et k deux entiers naturels tels que 1 < i < k < n, alors : 1 point

7

(=0t~ G =00l G0 (k- - )i- 1y

k k—1
ce qui donne bien : z() :k:<, )
) 1—1

Z<k>:1 k! k! R (k—1)!

. Etablir ensuite que Y posséde une espérance et que celle-ci est donnée par : 2,5 points

E(Y)= = i k—i
m=t (i )
k=1 i=1 \ 1 —1
La variable aléatoire Y ne peut prendre qu’un nombre fini de valeurs, elle admet donc une espérance,

n n
alors, puisque Y (Q) = [0,n], E(Y) = Zz’P(Y =)= ZiP(Y =1) (le terme pour i = 0 est nul)
=0 i=1

. -
k\ . )
%Z <Z->plqk_l> d’apres la question 5.b.

n

donc E(Y) = Z

Il
—
3

k=i
1 = (kN i e AWEE
() - a (e
i=1 k=1 1=1 k=i
ALy
EYY)=-— Zz( ,>plqk ' (opération délicate sur les bornes car on permute les deux sommes)
=iz N
k
1 k—1
= Z k(z B 1>plqk ‘" d’aprés la question 6.a.
k=11i=1
Ce qui donne finalement : | E(Y) = 1 i ki k-1 plgh?
. o\ vt

Remarque : cette interversion de sommes n’est en fait pas au programme (puisque c’est un cas ot l'indice
de la deuxiéme somme dépend de celui de la premiére).

1
. En déduire que E(Y) = w 2 points
Soit k € [1;n] quelconque. On commence par calculer la somme intérieure :
k k—1
E—1\ . ._. k—1\ . ~
Z < 1>plqk_z = Z < . >p]+1qk_1_] avec le changement d’indice j =17 — 1
i—1 \' T =N
— (k-1
= pz < ) )p’qkl] =pp+ q)k*1 d’aprés le bindome de Newton
: J
7=0
=pX 11 = P
1 « = 1 1
ainsi, E(Y) = - (kp) = %Zk = % X @ et finalement : | E(Y) = @
k=1 k=1
, 18 P k=2
a. Etablir que : Vn > 2, E(Y(Y — 1)) = — k(k—1) Z p'q " 3 points
n .
k=2 1=2 1 — 2



On proceéde comme a la question 6.b., d’aprés le théoréme du transfert, pour tout n > 2,
n n

E(Y(Y-1)) =) i(i—1)P(Y =) =Y i(i—1)P(Y =) car les termes pour i =0 et i = 1 sont nuls

i=0 =2
@ i(i —1) o= [k Z
E(Y(Y —1)) = g apré ion 5.b.
Y(Y —1)) Z < - Z <Z>p q > d’apres la question 5.b
=2 k=i
== Z Z i(i—1) < _>plq’l‘CZ == Z Z i(i —1) < ,)pzqkl en permutant les sommes
i=2 k=i =i
on va alors a nouveau utiliser la question 6.a. et deux fois, comme kK >7¢>2alors k—1>i—1>1:

donc (i — 1)2'(’:) = (i— 1)k<]::11> = k(i — 1)(?_ i) = k(k — 1)<]::22>

donc E(Y (Y 1nkk 1) 2 igh-i
onc E(Y( nzz - ( 2)1961

k=2 1=2
1 n k
i final | E(Y(Y —-1)=— o
ce qui donne finalement (Y( ) - Z < Z <z B 2) >
k=2 =2
2 1 2
. Montrer que 'on a : ¥n > 2, E(Y (Y — 1)) = (n 3 )P 2,5 points
On procéde comme a la question 6.c., on commence par simplifier la somme intérieure :
k
k—2\ .
Z < ) ' Z < >p]+2 k=2=7  avec le changement d’indice j =i — 2
=2 N =0
k—2
= p? Z < )qulC iy (p + q) 2 Q’aprés le bindome de Newton
= p X 1’“ 2 p
1 n p2 n p2 n p2 n n
insi, E(Y (Y — =) kk—1)==) (K*—k) == =Yk
i F ) L ) = k) - 8 (3
2 D(2n+1 1 2 D2n+1) — 1
done B (v 1)) P (Mt D@0 1) n(n 1) p? n(nt DEn £ 1) = Snn 1)
n 6 2 n 6
2 nt (1) =3) 2 L yen—2)
. 6 N 6
_p? ntn-1)  (nt+1)(n—1)p°
_n 3 _ 3
2 1 2
ce qui donne bien : | E(Y(Y —1)) = %
. Vérifier que cette expression reste valable pour n =1 1 point
Lorsque n = 1, la variable aléatoire Y est a valeurs dans {0;1}, donc dans tous les cas Y(Y — 1) =0
12 —1)p?
on en déduit que E(Y (Y — 1)) =0 et (% = 0 également.

Conclusion : I'expression obtenue & la question précédente reste valable lorsque n =1

. Exprimer, sans chercher a la calculer, la variance de Y en fonction de E(Y (Y — 1)) et E(Y) 1 point
Ona E(Y(Y —1))=E(Y?-Y)=EY? — E(Y) par linérité de I'espérance et on en déduit E(Y?) et

d’aprés la formule de Keenig-Huygens V(X) = EY®) + E(Y)? | = BEY(Y —1)) + E(Y) — B(Y)?

(np—Tp+6)(n+1)p

Remarque : avec les résultats des questions 6.c. et 7.c., on trouverait V(Y) = 1
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