
ECG 2 - Mathématiques appliquées Mathématiques DS n°4 - 24 janvier 2026Sujet 1 : type E
ri
ome - EMLDans tout le sujet, 
on
ernant les 
odes Python, on supposera les importations suivantes faites :
import numpy as np

import numpy.random as rdCorrigé Total sur 84 points - dont réda
tion/présentation/
larté : 3 pointsExer
i
e 1 24 pointsPartie 1 : loi de ParetoOn pose, pour α > 0 et tout x ∈ R : fα(x) =







0 si x < 1
α

xα+1
si x > 1Toutes les variables seront supposées dé�nies sur le même espa
e probabilisé ( Ω,A, P ). Pour une variable aléatoire

X, on notera FX sa fon
tion de répartition, et on notera RX = 1− FX la fon
tion dé�nie par :
∀x ∈ R, RX(x) = 1− FX(x)1. Montrer que, pour tout α > 0, fα est une densité de probabilité. 1,5 points� fα est positive sur R� fα est 
ontinue sur ] −∞, 1[ (fon
tion nulle) et sur ]1,+∞[ en tant que fon
tion puissan
e (quel
onque)don
 fα est 
ontinue sur R\{1} (don
 
ontinue sur R sauf éventuellement en un point)� ∫ 1

−∞

fα(t)dt = 0 (l'intégrale 
onverge et vaut 0) 
ar fα est nulle sur ]−∞, 1[Pour x > 1,

∫ x

1
fα(t)dt =

∫ x

1
αt−α−1dt =

[

−t−α
]x

1
= 1−

1

xα
et 1− 1

xα
−−−−→
x→+∞

1 
ar α > 0En 
on
lusion, ∫ +∞

−∞

fα(t)dt 
onverge et vaut : ∫ 1

−∞

fα(t)dt+

∫ +∞

1
fα(t)dt = 1de 
es trois points, on déduit que fα est une densité de probabilité.La loi asso
iée à 
ette densité est appelée loi de Pareto de paramètre α et on dira qu'une variable aléatoirede densité fα suit la loi P(α) (loi de Pareto).2. Soit X une variable aléatoire suivant la loi de Pareto P(α), ave
 α > 0a. Montrer que X admet une espéran
e si, et seulement si α > 1. Cal
uler alors E(X) 1,5 pointsPar dé�nition, X admet une espéran
e si et seulement si ∫ +∞

−∞

tfα(t)dt = α

∫ +∞

1

1

tα
dt 
onverge (
ar

fα est nulle sur ]−∞, 1[)don
 d'après le 
ritère de 
onvergen
e des intégrales de Riemann, X admet une espéran
e si et seulementsi α > 1 et dans 
e 
as : E(X) = α

∫ +∞

1

1

tα
dtet pour α > 1,

∫ +∞

1

1

tα
dt = lim

x→+∞

[

t−α+1

−α+ 1

]x

1

= lim
x→+∞

1

α− 1

[

1−
1

xα−1

]x

1

=
1

α− 1
(
ar α > 1 ⇒

α− 1 > 0) don
 E(X) =
α

α− 1b. Montrer que X admet une varian
e si et seulement si α > 2, et véri�er que, dans 
e 
as, 2 points
V (X) =

α

(α− 1)2(α− 2)1



X admet une varian
e ssi X admet un moment d'ordre 2,don
 si et seulement si ∫ +∞

−∞

t2f(t)dt = α

∫ +∞

1

1

tα−1
dt 
onvergedon
, 
omme pour la question pré
édente, 
ette dernière intégrale 
onverge si et seulement si α > 2, etle 
as é
héant elle vaut 1

α− 2don
 X admet un moment d'ordre 2 si et seulement si α > 2 et dans 
e 
as, d'après le théorème detransfert E (X2
)

=
α

α− 2don
 d'après la formule de K÷nig-Huygens, X admet une varian
e si et seulement si α > 2 et dans 
e
as : V (X) = E
(

X2
)

− E(X)2 =
α

α− 2
−

(

α

α− 1

)2

=
α(α − 1)2 − α2(α− 2)

(α− 2)(α − 1)2

=
α(α2 − 2α+ 1)− α(α2 − 2α)

(α− 2)(α − 1)2
d'où le résultat V (X) =

α

(α − 1)2(α− 2)3. Soit X une variable aléatoire suivant la loi de Pareto P(α), ave
 α > 0a. Pour tout réel x, déterminer une expression de FX(x) et de RX(x) (on distinguera les 
as x > 1 et
x < 1). 1,5 pointsPuisque fα est une densité, FX(x) =

∫ x

−∞

f(t)dt et puisque fα est nulle sur ]−∞, 1[don
 d'après les 
al
uls faits en question 1,
FX(x) =







0 si x < 1

1−
1

xα
si x > 1

de fait RX(x) =







1 si x < 1
1

xα
si x > 1b. Montrer que, pour a > 1 et b > 0 : P[X>a](X > a+ b) =

(

a

a+ b

)α 1,5 pointsPar dé�nition (des probabilités 
onditionnelles 
ar a > 1 ⇒ P (X > a) = R(a) > 0),
P[X>a](X > a+ b) =

P ([X > a+ b] ∩ [X > a])

P (X > a)
=

P (X > a+ b)

P (X > a)
=

RX(a+ b)

RX(a)
=

1
(a+b)α

1
aα

=
aα

(a+ b)αdon
 P[X>a](X > a+ b) =

(

a

a+ b

)α
. Déterminer lim
a→+∞

P[X>a](X > a+ b) 1 pointPuisque a 6= 0,
a

a+ b
=

a

a
×

1

1 + b
a

=
1

1 + b
a

et lim
a→+∞

1

1 + b
a

= 1 don
 lim
a→+∞

a

a+ b
= 1de plus X 7→ Xα est 
ontinue don
 lim

a→+∞

(

a

a+ b

)α

= 1α = 1, i.e. lim
a→+∞

P[X>a](X > a+ b) = 1d. En supposant que X désigne la durée de vie d'un 
omposant, que signi�e 
ette valeur limite ? 1 pointCela signi�e que plus le 
omposant a une durée de vie longue, moins il a de 
han
e de tomber en panne :s'il a vé
u a unité de temps ave
 a assez grand, la probabilité qu'il dure a+ b ave
 b > 0 quel
onque estpro
he de 1. Cela 
orrespond à une durée de vie ave
 rajeunissement, mieux qu'une loi exponentielle.Partie 2 : simulation informatique4. Soit U une variable aléatoire suivant la loi uniforme U ([0, 1[) et λ ∈ R
∗

+Montrer que la variable −
1

λ
ln(1− U) suit la loi exponentielle de paramètre λ 2,5 pointsVoir l'exemple du 
ours. On pose Y = −

1

λ
ln(1− U) :Soit y ∈ R alors (on utilise λ > 0 et la 
roissan
e d'exponentielle et ln)2



Y 6 y ⇔ −
1

λ
ln(1− U) 6 y ⇔ − ln(1− U) 6 λy ⇔ ln(1− U) > −λy ⇔ 1− U > e−λy ⇔ U 6 1− e−λydon
 P (Y 6 y) = P (U 6 1− e−λy) i.e. FY (y) = FU (1− e−λy)

1er 
as : y > 0 alors −λy 6 0 don
 0 6 e−λy
6 1 don
 1 > 1− e−λy

6 0et don
 FU (1− e−λy) = 1− e−λy 
ar FU (x) = x si x ∈ [0, 1] i.e. FY (y) = 1− e−λy

2ème 
as : y < 0 alors de même 1− e−λy < 0 et don
 FU (1− e−λy) = 0 i.e. FY (y) = 0�nalement FY (y) =







0 si y < 0

1− e−λy si y > 0on retrouve pour Y la fon
tion de répartition de la loi exponentielle de paramètre λ don
 Y →֒ E(λ)5. Soit Y une variable aléatoire suivant la loi exponentielle de paramètre λ > 0 2 pointsMontrer que la variable eY suit la loi de Pareto de paramètre λSi Y →֒ E(λ) et Z = eY , on 
onstate que Y > 0 don
 Z > 1Pour x < 1 on a don
 P (Z 6 x) = 0 et pour x > 1 :
Z 6 x ⇔ eY 6 x ⇔ Y 6 ln(x) par 
roissan
e de ln et expdon
 P (Z 6 x) = P (Y 6 ln(x)) i.e. FZ(x) = FY (ln(x)) = 1 − eλ ln(x) = 1 −

1

xλ

ar x > 1 ⇒ ln(x) > 0et Y →֒ E(λ), on retrouve don
 la fon
tion de répartition de la loi de Pareto de paramètre λ trouvée à laquestion 3.a. don
 Z suit bien la loi de Pareto de paramètre λ6. En déduire une 
ommande Python permettant de simuler une réalisation de la loi de Pareto de paramètre λ1,5 pointsAve
 l' import rd.random as rd et rd.random(), on simule la loi uniforme sur [0, 1[ don
 d'après lesquestions pré
édentes puisque : Y = −

1

λ
ln(1− U) →֒ E(λ) et don
 Z = eY =

1

(1− U)1/λ
→֒ P(λ)alors z=1 /(1-rd.random()) * *(1 / lambda) simulera une réalisation de P(λ), pour lambda donné.Partie 3 : questions de 
onvergen
eOn suppose dans 
ette partie que α est un réel stri
tement supérieur à 2 et X une variable suivant la loi de Paretode paramètre αOn 
onsidère une suite (Xn)n∈N∗ de variables aléatoire indépendantes et de même loi que X (loi de Pareto deparamètre α > 2).On pose, pour n ∈ N

∗, Un = min (X1, . . . ,Xn) et Tn = cn

n
∑

k=1

Xk où cn est un réel.7. a. Déterminer la valeur de cn pour que : ∀n ∈ N
∗, E (Tn) = 1 1,5 pointsPar linéarité de l'espéran
e, E (Tn) = cn

n
∑

k=1

E (Xk) = cn

n
∑

k=1

α

α− 1
= cn ×

nα

α− 1don
 on doit avoir cn =
α− 1

nα
=

1

nE(X)
pour que E (Tn) = 1b. On suppose cn 
hoisi tel que E (Tn) = 1 pour tout n ∈ N

∗ 2 pointsCal
uler alors V (Tn) et sa la limite quand n tend vers +∞

V (Tn) = c2nV

(

n
∑

k=1

Xk

) par propriétéet 
omme X1, . . . Xn sont mutuellement indépendantes et de même loi que X :
V (Tn) = c2n

n
∑

k=1

V (Xk) = c2nnV (X) soit V (Tn) =
V (X)

nE(X)2
d'après la question pré
édente

3



et don
 lim
n→+∞

V (Tn) = 0 puisque V (X) et E(X) ne dépendent pas de n8. Soit n ∈ N
∗a. Déterminer P (Un > x) pour x < 1 1 point

X1, . . . ,Xn suivant des lois de Pareto, elles sont à valeurs dans [1,+∞[ (i.e. ∀k ∈ [[1, n]], P (Xk < 1) = 0et don
 P (Xk > 1) = 1)don
 le minimum est for
ément plus grand que 1, i.e. P (Un > x) = 1 pour x < 1b. Montrer que, pour x > 1, P (Un > x) =

(

1

x

)nα 1,5 pointsPour x ∈ R, x > 1,min(X1, . . . ,Xn) > x ⇔ X1 > x et X2 > x et . . . Xn > xdon
 [Un > x] =
n
⋂

k=1

[Xk > x] don
 P ((Un > x) = P

(

n
⋂

k=1

[Xk > x]

)don
 par indépendan
e des variables X1, . . . ,Xn, P (Un > x) =
n
∏

k=1

P (Xk > x)soit P (Un > x) =

n
∏

k=1

RX(x) = RX(x)n =

(

1

xα

)n

=
1

xnα
on trouve bien P (Un > x) =

(

1

x

)nα
. Re
onnaître alors la loi de Un 2 pointsJusti�er que Un admet une espéran
e E (Un) et une varian
e V (Un) et montrer que
lim

n→+∞

E (Un) = 1 et lim
n→+∞

V (Un) = 0On re
onnait la fon
tion R d'une loi de Pareto de paramètre nα, plus pré
isémenton déduit de 8.b. : FUn
(x) = P (Un 6 x) =







0 si x < 1

1−
1

xnα
si x > 1

et don
 Un →֒ P(nα)de plus n ∈ N
∗ et α > 2 don
 nα > 2 et don
 Un admet un moment d'ordre 2 , don
 une espéran
e etune varian
e.et d'après les résultats de la question 2., E (Un) =

nα

nα− 1
=

1

1− 1
nα

don
 lim
n→+∞

E (Un) = 1 ,et V (Un) =
nα

(nα− 1)2(nα− 2)
=

1

(nα)2
×

1
(

1− 1
nα

)2 (
1− 2

nα

)

don
 lim
n→+∞

V (Un) = 0Exer
i
e 2On note B = (e1, e2, e3) la base 
anonique de R
3On 
onsidère l'endomorphisme f de l'espa
e ve
toriel R3 représenté dans la base B par la matri
e A donnée par :

A =











3 −3 1

1 0 0

0 1 0











I3 (resp. 0M3(R) ) désignera la matri
e identité de M3(R) (resp. la matri
e nulle), représentant l'endomorphismeidentité id (resp. l'endomorphisme nul 0L (R3) ) de R
3 dans une base quel
onque.Partie I : étude de f1. a. Cal
uler (A− I3)

3 1,5 points4



Par le 
al
ul on trouve :
(A− I3)

2 =











2 −3 1

1 −1 0

0 1 −1





















2 −3 1

1 −1 0

0 1 −1











=











1 −2 1

1 −2 1

1 −2 1









puis (A− I3)
3 =











2 −3 1

1 −1 0

0 1 −1





















1 −2 1

1 −2 1

1 −2 1











=











0 0 0

0 0 0

0 0 0









don
 (A− I3)
3 = 03b. En déduire que f est un isomorphisme et donner une expression de la matri
e de f−1 en fon
tion de

I3, A et A2 2,5 pointsEn développant la relation pré
édente, on obtient :
(A− I3)(A

2 − 2A+ I3) = 03 don
 A3 − 2A2 +A−A2 + 2A− I3 = 03 soit A3 − 3A2 + 3A = I3don
 A
(

A2 − 3A+ 3I3
)

= I3don
 A est inversible, et A−1 = A2 − 3A+ 3I3don
 f est un isomorphisme , et en dé�nissant g par A−1 = MB(g)alors MB(f)MB(g) = MB(g)MB(f) = I3don
 par propriété sur les matri
es de 
omposées d'appli
ations linéaires, MB(g ◦ f) = MB(f ◦ g) =
MB(id) don
 par 
ara
térisation d'une appli
ation linéaire g ◦ f = f ◦ g = iddon
 g = f−1 et de fait MB(f−1) = A−1 = A2 − 3A+ 3I32. Montrer que A admet une seule valeur propre et que le sous-espa
e propre asso
ié est de dimension 1

(X − 1)3 est un polyn�me annulateur de A et admet 1 pour unique ra
ine, don
 Sp(A) ⊂ {1} 2,5 pointson résout alors le système linéaire AX = X ⇔ (A− I3)X = 03 d'in
onnue X = t (x1 x2 x3) :
AX = X ⇔











2 −3 1 0

1 −1 0 0

0 1 −1 0











⇔











1 −1 0 0

2 −3 1 0

0 1 −1 0











L1 ↔ L2

L1 ↔ L2 ⇔











1 −1 0 0

0 −1 1 0

0 1 −1 0











L2 ↔ L2 − 2L1

⇔











1 −1 0 0

0 −1 1 0

0 0 0 0











L3 ↔ L2 + L3

⇔



















x1 = x2

x2 = x3 ⇔ X ∈
{t(x1 x1 x1), x1 ∈ R

}il existe des solutions non nulles, don
 1 ∈ Sp(A) et don
 Sp(A) = {1} et E1(A) = Vect
(t(1 1 1)

)qui est bien de dimension 1 
ar il s'agit d'un Vect 
omposé d'un seul ve
teur non nul.3. A est-elle diagonalisable ? 1 point
A n'est pas diagonalisable 
ar sinon elle serait semblable et don
 égale à la matri
e identité, 
e qui n'estpas le 
as :on suppose A diagonalisable, alors A = PDP−1 où D = I3 
ar Sp(A) = {1} et P inversible,don
 A = PI3P

−1 = PP−1 = I3 , 
e qui est faux.4. Soit e′2 = (f − id) (e3) et e′1 = (f − id)
(

e′2
)a. Cal
uler e′2 et e′1 1 pointOn utilise le lien appli
ation linéaire- matri
e f((x, y, z)) = (a, b, c) ⇔ At(x y z) = t(a b c) ave


MB(f − id) = MB(f)−MB(id) = A− I3 5



or (A−I3)
t(0 0 1) = t(1 0 −1) et (A−I3)

t(1 0 −1) = t(2 1 0)− t(1 0 −1) = t(1 1 1)don
 e′2 = (1, 0,−1) et e′1 = (1, 1, 1)b. Montrer que B
′ =

(

e′1, e
′

2, e3
) est une base de R

3 1,5 pointsSoit (λ1, λ2, λ3) ∈ R
3, λ1e

′

1 + λ2e
′

2 + λ3e3 = (0, 0, 0)alors 








λ1 + λ2 = 0

λ1 = 0

λ1 − λ2 + λ3 = 0

don
 λ1 = 0 puis λ2 = 0 et λ3 = 0don
 B
′ est une famille libre de R

3, de plus CardB
′ = 3 = dim(R3) don
 B

′ est une base de R
3
. Déterminer la matri
e T de f relative à la base B

′ 1 pointOn é
rit don
 f(e′1), f(e
′

2), f(e3) dans la base B
′or d'après 2. f(e′1) = e′1 et d'après 4.a. f(e′2) = e′1 + e′2 et f(e3) = e′2 + e3don
 T = MB′(f) =











1 1 0

0 1 1

0 0 1









d. Donner la matri
e de passage P de B vers B
′ et une relation entre P, T et A 1,5 pointsPar dé�nition la matri
e de passage de B vers B

′ 
orrespond à la � le
ture � des ve
teurs de B
′ dansla base B don
 P =











1 1 0

1 0 0

1 −1 1









et par propriété de 
hangement de base pour une appli
ation linéaire : MB(f) = PB→B′MB′(f)PB′→Bdon
 par dé�nition des matri
es, et 
ar par propriété PB′→B = P−1
B→B′ , on trouve A = PTP−15. On note B = A− I3a. Montrer que ∀n ∈ N, An = I3 + nB +

n(n− 1)

2
B2 2 pointsOn pro
ède par ré
urren
e, pour n ∈ N, on pose An = I3 + nB +

n(n− 1)

2
B2Initialisation : P (0) est vraie ⇔ A0 = I3 + 0×B + 0×B2 ⇔ I3 = I3
e qui est vrai don
 P (0) est vraieHérédité : soit n ∈ N, on suppose P (n) vraiealors par hypothèse de ré
urren
e An = I3 + nB +

n(n− 1)

2
B2don
 An+1 = AnA = An(B + I3) = (I3 + nB +

n(n− 1)

2
B2)(B + I3)

= B + nB2 +
n(n− 1)

2
B3 + I3 + nB +

n(n− 1)

2
B2

= I3 + (n+ 1)B +

(

n+
n(n− 1)

2

)

B2 
ar B3 = (A− I3)
3 = 03 d'après 1.don
 An+1 = I3+(n+1)B+

(n+ 1)n

2
B2 
ar n+ n(n− 1)

2
=

2n+ n(n− 1)

2
=

n(n− 1 + 2)

2
=

n(n+ 1)

2don
 P (n + 1) est vraie d'où l'hérédité et don
 par théorème de ré
urren
e,
∀n ∈ N, P (n) est vraie i.e. An = I3 + nB +

n(n− 1)

2
B26



b. En déduire trois suites réelles (αn)n∈N , (βn)n∈N et (γn)n∈N telles que : 1 point
∀n ∈ N, An = αnI3 + βnA+ γnA

2Comme B = A− I3,, on déduit de la question pré
édente que pour n ∈ N :
An = I3 + n (A− I3) +

n(n− 1)

2
(A− I3)

2 = I3 + nA− nI3 +
n(n− 1)

2
(A2 − 2A+ I3)

=

(

1− n+
n(n− 1)

2

)

I3 + (n− n(n− 1))A+
n(n− 1)

2
A2or 1− n+

n(n− 1)

2
=

−2(n− 1) + n(n− 1)

2
=

(n − 2)(n − 1)

2don
 An =
(n− 2)(n − 1)

2
I3 + n(2− n)A+

n(n− 1)

2
A2d'où le résultat ave
 αn =

(n− 2)(n − 1)

2
, βn = n(2− n), γn =

n(n− 1)

2Nota bene : on peut véri�er que 
ette relation est valable pour n = 0, n = 1 et n = 2Partie II : résolution d'une équationDans 
ette partie, on 
her
he à résoudre l'équation
E : M2 = A d'in
onnue M ∈ M3(R)On suppose dans un premier temps que 
ette équation admet des solutions et que M ∈ M3(R) est une solution del'équation EOn note g l'endomorphisme représenté par M suivant la base BAinsi, on remarquera que g2 = g ◦ g = f6. En utilisant un polyn�me annulateur de M , montrer que Sp(M) ⊂ {−1, 1} 1 pointPuisqu'pn suppose que M2 = A alors (M2 − I3)

3 = 03 don
 (x2 − 1
)3 est un polyn�me annulateur de M ,or (x2 − 1

)3
= 0 ⇔ (x2 − 1) = 0 ⇔ x = −1 ou x = 1,don
 les ra
ines du polyn�me annulateur sont −1 et 1, don
 Sp(M) ⊂ {−1, 1}7. a. Montrer que, si V est un ve
teur propre de M , alors V est un ve
teur propre de A 1 pointSi V est ve
teur propre de M alors MV = µV , ave
 V 6= 03,1 et µ ∈ Rdon
 M2V = M(MV ) = M(µV ) = µMV = µ2V i.e. AV = µ2Vdon
 V est aussi un ve
teur propre de A asso
ié à la valeur propre µ2b. En raisonnant sur la dimension du sous-espa
e propre de A, en déduire que :i. M ne peut pas avoir deux valeurs propres di�érentes 1,5 pointsSi M admet deux valeurs propres distin
tes, on peut trouver deux ve
teurs propres linéairementindépendants V1 et V2 de M (deux ve
teurs propres asso
iés à des valeurs propres distin
tes formentune famille libre)
es ve
teurs étant aussi des ve
teurs propres de A, on aurait : V1 et V2 dans E1(A) (l'unique sous-espa
e propre de A) et (V1, V2) libre, don
 dimE1(A) > 2 
e qui n'est pas possible.don
 notre hypothèse de départ est fausse, don
 M admet au plus une seule valeur propre.ii. si M admet une valeur propre, alors M admet une unique valeur propre, et que le sous-espa
epropre asso
ié est de dimension 1 1 pointIl s'agit du même raisonnement, 
omme nous venons de le voir, si M admet une valeur propre, iln'en admet pas d'autre, don
 il admet un seul sous-espa
e propre.Si 
e sous-espa
e était de dimension > 2, alors on pourrait trouver une famille libre ( V1, V2 ) forméede ve
teurs propres de M , don
 de A 7



on aurait à nouveau E1(A) de dimension > 2 
e qui n'est pas possibledon
 si M admet une valeur propre, il admet un seul sous-espa
e propre, de dimension 18. Montrer que f
(

g
(

e′1
))

= g3
(

e′1
)

= g
(

e′1
). En déduire qu'il existe un réel µ tel que : 2 points

g
(

e′1
)

= µe′1 et µ2 = 1Puisque f = g2, f
(

g
(

e′1
))

= g2
(

g
(

e′1
))

= g3
(

e′1
)

= g
(

g2
(

e′1
))

= g
(

f
(

e′1
))et 
omme f

(

e′1
)

= e′1 on obtient f(g(e′1)) = g(e′1) i.e. le résultat 
her
hé.don
 par analogie ave
 l'é
riture matri
ielle, en notant U = t (
1 1 1

) on a AMU = MUdon
 MU ∈ E1(A) = Vect(U)don
 ∃µ ∈ R,MU = µU , i.e. µ est valeur propre de M et U est un ve
teur propre asso
ié don
 d'après 6.
µ ∈ {−1, 1} et don
 µ2 = 1, don
 ave
 l'appli
ation linéaire, ∃µ ∈ R, g(e′1) = µe′1 ave
 µ2 = 1Quitte à 
hanger g en −g (qui est une autre solution de g2 = f ), on supposera dans la suite que :

g
(

e′1
)

= e′1Des questions pré
édentes, on obtient que M admet une et une seule valeur propre égale à 1 , et son sous-espa
e propre asso
ié est de dimension 19. Justi�er que M + I3 est inversible, puis que (M − I3)
3 = 0M3(R) 2 pointsPuisque Sp(M) = {1} alors −1 n'est pas une valeur propre de M et de fait M + I3 est inversiblede plus, 
omme (M2 − I3

)3
= 03, on a : ((M − I3) (M + I3))

3 = 03don
 (M − I3)
3 (M + I3)

3 = 03 puisque (M − I3)(M + I3) = (M + I3)(M − I3)

(M + I3) étant inversible, elle est simpli�able don
 (M − I3)
3 = 010. On note N = M − I3 et on rappelle que B = A− I3a. Montrer que : N2 + 2N = B 1 point

M2 = A donne (N + I3)
2 = B + I3 soit N2 + 2N + I3 = B + I3 et don
 N2 + 2N = Bb. Montrer que 4N2 = B2 et en déduire une expression de N en fon
tion de B et de B2, puis trouver troisréels a, b, c tels que : M = aI3 + bA+ cA2 2,5 pointsComparer le résultat ave
 
elui obtenu dans la question 5.b.En élevant au 
arré l'égalité (N2 + 2N

)2
= B2, 
omme (N2 + 2N

)2
= 4N2 + 4N3 +N4 = 4N2
ar N3 = 03 (et don
 N4 = 03), on trouve 4N2 = B2or d'après 10.a. N2 + 2N = B don
 2N = B −N2 = B −

1

4
B2 et don
 N =

1

2
B −

1

8
B2or N = M − I3 et B = A− I3 don
 M − I3 =

1

2
(A− I3)−

1

8
(A− I3)

2 = −
1

2
I3 +

1

2
A−

1

8
(A2 − 2A+ I3)don
 M = I3 −

1

2
I3 +

1

2
A−

1

8
I3 +

1

4
A−

1

8
A2 i.e. M =

3

8
I3 +

3

4
A−

1

8
A2d'où le résultat ave
 a =

3

8
, b =

3

4
et c = −

1

8Il s'agit des 
oe�
ients trouvés dans la question 5.b. en remplaçant n par 1/2 (la formule sembledon
 valable plus largement que pour des puissan
es entières et positives).
. Véri�er par un 
al
ul que (aI3 + bA+ cA2
)2

= A 2 pointsOn développe (aI3 + bA+ cA2
)2

= a2I3 + abA+ acA2 + baA+ b2A2 + bcA3 + caA2 + cbA3 + c2A4don
 (aI3 + bA+ cA2
)2

= a2I3 + 2abA+ (2ac+ b2)A2 + 2bcA3 + c2A48



or d'après la question 5.b. (ou 2. pour A3), A3 = 3A2 − 3A+ I3 et A4 = 3I3 − 8A+ 6A2don
 (aI3 + bA+ cA2
)2

= a2I3 + 2abA+ (2ac+ b2)A2 + 2bc(3A2 − 3A+ I3) + c2(3I3 − 8A+ 6A2)

= (a2 + 2bc+ 3c2)I3 + (2ab− 6bc− 8c2)A+ (2ac+ b2 + 6bc+ 6c2)A2or d'après les valeurs de a, b et c, a2 + 2bc+ 3c2 =
9

64
−

6

32
+

3

64
= 0

2ab− 6bc− 8c2 =
18

32
+

18

32
−

1

8
=

32

32
= 1 et 2ac+ b2 +6bc+6c2 = −

6

64
+

9

16
−

18

32
+

6

64
=

18− 18

32
= 0on trouve don
 bien (

aI3 + bA+ cA2
)2

= ANota bene : il s'agit i
i de la synthèse du raisonnement, à la question pré
édente, nous avions trouvéque 
'était la seule solution possible, mais 
omme il ne s'agit pas d'un raisonnement par équivalen
e, ilfaut la véri�er.Remarque : on pouvait aussi utiliser A = B + I3 et poursuivre le 
al
ul (en utilisant B3 = B4 = 0)11. Con
lure sur les solutions de E 1,5 pointsAve
 les hypothèses pré
édentes, on a trouvé que l'unique solution était 
elle de la question 10.b., mais onavait 
onsidéré que la valeur propre était positive (en 
hangeant g en −g, suivant la remarque de la question8.). On remarque aisément que l'opposée de 
ette solution est également solution d'après le 
al
ul de laquestion 11. (le − disparait)�nalement E admet don
 deux solutions qui sont don
 aI3 + bA+ cA2 et − (aI3 + bA+ cA2
)Remarque : pour bien faire il faudrait montrer que 
es deux solutions ne sont pas égales.Exer
i
e 3 - Edhe
 2020 23 pointsSoit n un entier naturel non nul et p un réel de ]0; 1[. On pose q = 1− pOn dispose de deux urnes, l'urne U qui 
ontient n boules numérotées de 1 à n et l'urne V qui 
ontient des boulesblan
hes en proportion pOn pio
he une boule au hasard dans U et on note X la variable aléatoire égale au numéro de la boule tirée.Si X prend la valeur k, on pio
he k boules dans V , une par une, ave
 remise à 
haque fois de la boule tirée, et onappelle Y la variable aléatoire égale au nombre de boules blan
hes obtenues.1. Dans le 
as où n = 1, re
onnaitre la loi de Y 1 pointDans le 
as où n = 1, X ne prend que la valeur 1. On pio
he don
 une boule dans l'urne V , boule qui a uneprobabilité p d'être blan
he. Ainsi, Y prend la valeur 1 ave
 la probabilité p, et 0 ave
 la probabilité 1− pAutrement dit, lorsque n = 1, Y suit une loi de Bernoulli de paramètre pOn revient au 
as général.2. Re
onnaitre la loi de X et donner son espéran
e et sa varian
e. 1 pointIl y a une boule portant 
haque numéro entre 1 et n. Chaque numéro a don
 la même probabilité d'être tiré.par 
onséquent, X suit une loi uniforme dans [[1, n]]d'après le 
ours, on a alors E(X) =

n+ 1

2
et V (X) =

n2 − 1

123. Soit k un élément de [[1, n]]. Re
onnaitre la loi de Y , 
onditionnellement à l'événement (X = k), et en déduire,en distinguant les 
as 0 6 i 6 k et k < i, la probabilité P(X=k)(Y = i) 1,5 pointsSi l'événement (X = k) est réalisé, alors on tire k boules dans l'urne V . Dans 
e 
as, la variable aléatoire Y
ompte don
 le nombre de su

ès (tirer une boule blan
he) lors d'une su

ession de k épreuves de Bernoulliidentiques et indépendantes, ave
 une probabilité de su

ès égale à p9



par 
onséquent, la loi de Y 
onditionnellement à l'événement (X = k) est une loi binomiale B(k, p) (et on nepeut obtenir stri
tement plus de k su

ès)ainsi, pour tout i ∈ N, on a : P(X=k)(Y = i) =















(

k

i

)

piqk−i si 0 6 i 6 k

0 si i > k4. On rappelle les 
ommandes Python suivantes qui permettent de simuler des variables usuelles dis
rètes :� rd.randint(a,b+1) simule une variable aléatoire suivant la loi uniforme sur [[a, b]]� rd.binomial(n,p) simule une variable aléatoire suivant la loi binomiale de paramètres n, p� rd.geometric(p) simule une variable aléatoire suivant la loi géométrique de paramètre p� rd.poisson(a) simule une variable aléatoire suivant la loi de Poisson de paramètre aa. Compléter le s
ript Python suivant a�n qu'il permette de simuler les variables X et Y 1 point
def simulXY (n,p):

X=

Y=

return

Il su�t de simuler les lois déterminées lors des questions 2. et 3. don

X=rd.randint(1,n+1) et Y=rd.binomial(X,p) et de renvoyer le résultatsouhaité : return X,Y (ou seulement Y qui est plut�t la variable à laquelleon s'intéresse i
i)b. E
rire un programme Python qui 
al
ule la moyenne de 1 000 simulations de la variable aléatoire YComment peut-on interpréter le résultat ? 1,5 pointsIl faut 
hoisir n et p, on prend i
i n = 10 et p =

1

3Considérant que notre fon
tion pré
édente renvoie seulement Y (sinon on prend seulement le deuxièmerésultat ave
 simulXY(10,1/3)[1]) :
np .mean ([ simulXY (10 ,1/3) for n in range (1000) ]Le résultat doit nous donner une estimation de l'espéran
e de Y5. a. Justi�er que l'ensemble Y (Ω) des valeurs prises par Y est égal à [[0, n]], puis montrer que : 2 points

P (Y = 0) =
q (1− qn)

n(1− q)Si l'événement (X = k) est réalisé, alors Y peut prendre les valeurs de 0 à k. Or, X peut prendre lesvaleurs de 1 à n. Don
 Y (Ω) =

n
⋃

k=1

[[0, k]], 
'est-à-dire Y (Ω) = [[0, n]]alors, d'après la formule des probabilités totales, ave
 le système 
omplet d'événements (X = k)16k6n,on a : P (Y = 0) =

n
∑

k=1

P (X = k)P(X=k)(Y = 0)don
 d'après les résultats des questions 2. et 3. (
ar 0 6 k) P (Y = 0) =

n
∑

k=1

1

n

(

k

0

)

p0qk =
1

n

n
∑

k=1

qkon re
onnait alors une somme de termes d'une suite géométrique de raison q ave
 q 6= 1d'où P (Y = 0) =
1

n
×

q − qn+1)

1− q
=

q(1− qn)

n(1− q)b. E
rire, pour tout i de [[1, n]], la probabilité P (Y = i) sous forme d'une somme de n− i+ 1 termes quel'on ne 
her
hera pas à simpli�er. 2 pointsSoit i ∈ [[1, n]] quel
onque,de même, par la formule des probabilités totales (système 
omplet d'événements (X = k)16k6n) :
P (Y = i) =

n
∑

k=1

P (X = k)P(X=k)(Y = i) =
n
∑

k=1

1

n
P(X=k)(Y = i) d'après la question 2.don
 P (Y = i) =

n
∑

k=i

1

n
P(X=k)(Y = i) 
ar P(X=k)(Y = i) = 0 si k < i (
f question 3.) : 
e qui donne,10



d'après la question 3. (
as i 6 k : P (Y = i) =
n
∑

k=i

1

n

(

k

i

)

piqk−i =
1

n

n
∑

k=i

(

k

i

)

piqk−i6. a. Soit i et k deux entiers naturels tels que 1 6 i 6 k 6 n. Montrer l'égalité : i k

i



 = k





k − 1

i− 1



Soit i et k deux entiers naturels tels que 1 6 i 6 k 6 n, alors : 1 point
i

(

k

i

)

= i
k!

(k − i)!i!
=

k!

(k − i)!(i − 1)!
= k

(k − 1)!

(k − i)!(i − 1)!
= k

(k − 1)!
(

(k − 1)− (i− 1)
)

!(i− 1)!
e qui donne bien : i

(

k

i

)

= k

(

k − 1

i− 1

)b. Etablir ensuite que Y possède une espéran
e et que 
elle-
i est donnée par : 2,5 points
E(Y ) =

1

n

n
∑

k=1



k

k
∑

i=1





k − 1

i− 1



 piqk−i



La variable aléatoire Y ne peut prendre qu'un nombre �ni de valeurs, elle admet don
 une espéran
e,alors, puisque Y (Ω) = [[0, n]], E(Y ) =
n
∑

i=0

iP (Y = i) =
n
∑

i=1

iP (Y = i) (le terme pour i = 0 est nul)don
 E(Y ) =

n
∑

i=1

(

i

n

n
∑

k=i

(

k

i

)

piqk−i

) d'après la question 5.b.
=

1

n

n
∑

i=1

(

i

n
∑

k=i

(

k

i

)

piqk−i

)

=
1

n

n
∑

i=1

n
∑

k=i

i

(

k

i

)

piqk−i

E(Y ) =
1

n

n
∑

k=1

k
∑

i=1

i

(

k

i

)

piqk−i (opération déli
ate sur les bornes 
ar on permute les deux sommes)
=

1

n

n
∑

k=1

k
∑

i=1

k

(

k − 1

i− 1

)

piqk−i d'après la question 6.a.Ce qui donne �nalement : E(Y ) =
1

n

n
∑

k=1

(

k

k
∑

i=1

(

k − 1

i− 1

)

piqk−i

)Remarque : 
ette interversion de sommes n'est en fait pas au programme (puisque 
'est un 
as où l'indi
ede la deuxième somme dépend de 
elui de la première).
. En déduire que E(Y ) =
(n+ 1)p

2
2 pointsSoit k ∈ [[1;n]] quel
onque. On 
ommen
e par 
al
uler la somme intérieure :

k
∑

i=1

(

k − 1

i− 1

)

piqk−i =

k−1
∑

j=0

(

k − 1

j

)

pj+1qk−1−j ave
 le 
hangement d'indi
e j = i− 1

= p

k−1
∑

j=0

(

k − 1

j

)

pjqk−1−j = p(p+ q)k−1 d'après le bin�me de Newton
= p× 1k−1 = painsi, E(Y ) =

1

n

n
∑

k=1

(kp) =
p

n

n
∑

k=1

k =
p

n
×

n(n+ 1)

2
et �nalement : E(Y ) =

(n+ 1)p

27. a. Etablir que : ∀n > 2, E(Y (Y − 1)) =
1

n

n
∑

k=2



k(k − 1)
k
∑

i=2





k − 2

i− 2



 piqk−i



 3 points11



On pro
ède 
omme à la question 6.b., d'après le théorème du transfert, pour tout n > 2,
E(Y (Y − 1)) =

n
∑

i=0

i(i− 1)P (Y = i) =

n
∑

i=2

i(i− 1)P (Y = i) 
ar les termes pour i = 0 et i = 1 sont nuls
E(Y (Y − 1)) =

n
∑

i=2

(

i(i − 1)

n

n
∑

k=i

(

k

i

)

piqk−i

) d'après la question 5.b.
=

1

n

n
∑

i=2

n
∑

k=i

i(i− 1)

(

k

i

)

piqk−i =
1

n

n
∑

k=2

k
∑

i=2

i(i− 1)

(

k

i

)

piqk−i en permutant les sommeson va alors à nouveau utiliser la question 6.a. et deux fois, 
omme k > i > 2 alors k − 1 > i− 1 > 1 :don
 (i− 1)i

(

k

i

)

= (i− 1)k

(

k − 1

i− 1

)

= k(i− 1)

(

k − 1

i− 1

)

= k(k − 1)

(

k − 2

i− 2

)don
 E(Y (Y − 1)) =
1

n

n
∑

k=2

k
∑

i=2

k(k − 1)

(

k − 2

i− 2

)

piqk−i
e qui donne �nalement : E(Y (Y − 1)) =
1

n

n
∑

k=2

(

k(k − 1)
k
∑

i=2

(

k − 2

i− 2

)

piqk−i

)

b. Montrer que l'on a : ∀n > 2, E(Y (Y − 1)) =

(

n2 − 1
)

p2

3
2,5 pointsOn pro
ède 
omme à la question 6.
., on 
ommen
e par simpli�er la somme intérieure :

k
∑

i=2

(

k − 2

i− 2

)

piqk−i =

k−2
∑

j=0

(

k − 2

j

)

pj+2qk−2−j ave
 le 
hangement d'indi
e j = i− 2

= p2
k−2
∑

j=0

(

k − 2

j

)

pjqk−2−j = p2(p+ q)k−2 d'après le bin�me de Newton
= p2 × 1k−2 = p2ainsi, E(Y (Y − 1)) =

1

n

n
∑

k=1

(

k(k − 1)p2
)

=
p2

n

n
∑

k=1

k(k − 1) =
p2

n

n
∑

k=1

(k2 − k) =
p2

n

(

n
∑

k=1

k2 −

n
∑

k=1

k

)don
 E(Y (Y − 1)) =
p2

n

(

n(n+ 1)(2n + 1)

6
−

n(n+ 1)

2

)

=
p2

n
×

n(n+ 1)(2n + 1)− 3n(n+ 1)

6

=
p2

n
×

n(n+ 1)
(

(2n+ 1)− 3
)

6
=

p2

n
×

n(n+ 1)(2n − 2)

6

=
p2

n
×

n(n+ 1)(n − 1)

3
=

(n + 1)(n − 1)p2

3
e qui donne bien : E(Y (Y − 1)) =
(n2 − 1)p2

3
. Véri�er que 
ette expression reste valable pour n = 1 1 pointLorsque n = 1, la variable aléatoire Y est à valeurs dans {0; 1}, don
 dans tous les 
as Y (Y − 1) = 0on en déduit que E(Y (Y − 1)) = 0 et (12 − 1)p2

3
= 0 également.Con
lusion : l'expression obtenue à la question pré
édente reste valable lorsque n = 1d. Exprimer, sans 
her
her à la 
al
uler, la varian
e de Y en fon
tion de E(Y (Y − 1)) et E(Y ) 1 pointOn a E(Y (Y − 1)) = E(Y 2 − Y ) = E(Y 2)−E(Y ) par linérité de l'espéran
e et on en déduit E(Y 2) etd'après la formule de K÷nig-Huygens V (X) = E(Y 2) + E(Y )2 = E(Y (Y − 1)) + E(Y )− E(Y )2Remarque : ave
 les résultats des questions 6.
. et 7.
., on trouverait V (Y ) =

(np− 7p+ 6)(n + 1)p
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