
ECG 2 - mathématiques appliquées Février 2026

Chapitre 12 - fonctions numériques de deux variables réelles

Objectifs d’apprentissage - A la fin de ce chapitre, je sais :
• justifier le caractère C

1,C 2 d’une fonction à deux variables �

• calculer les dérivées partielles du premier ordre (gradient) d’une fonction de deux variables �

• calculer la matrice hessienne d’une fonction de deux variables �

• détermimer les éventuels points critiques �

• déterminer la nature d’un point critique (extremum local ou non) à l’aide de l’étude des valeurs
propres de la matrice hessienne �

Dans tout le chapitre, f désignera une fonction de deux variables, on écrira donc f(x, y), et une
fonction ≪ numérique ≫ c’est-à-dire à valeurs dans R
Elle sera généralement définie sur R2 ou sur O, un ≪ ensemble ouvert ≫ de R

2

1 Continuité, dérivation, classe C
1,C 2

1.1 Continuité

Voir la fin du chapitre pour la définition de la continuité.

Propriété - fonctions continues de référence :

les fonctions de deux variables suivantes sont
continues sur R2

• les fonctions (x, y) 7→ x et (x, y) 7→ y, appelées
fonctions coordonnées.

• les fonctions du type (x, y) 7→
N
∑

i=0

M
∑

j=0

λi,jx
iyj

appelée fonctions polynomiales

Exemples :

(x, y) 7→ x2 + 3y

(x, y) 7→ 1− ln(2)x3y7 + 9y2 − 6x

sont polynomiales donc continues sur R2

(x, y) 7→ 5x3 − 11xy2

ex + 1
n’est pas polynomiale

Propriétés - opérations et composition de

fonctions continues :

• la somme, le produit, le quotient (quand
le dénominateur ne s’annule pas) de fonctions
continues sur O est continue sur O
• si f : O → I ⊂ R et g : I → R sont continues,
alors g ◦ f l’est aussi.
autrement dit, la composée (lorsque cela a un
sens) de deux fonctions continues est continue.

Exemple : pour (x, y) ∈ R
2, on définit f par

f(x, y) =
ln(x2 + y4 + 1) + exy

|x|+ |y|+ 1
alors

(x, y) 7→ x2 + y4 + 1, (x, y) 7→ xy, (x, y) 7→ x et
(x, y) 7→ y sont polynomiales donc continues
t → ln(t), t → et et t → |t| sont continues
donc par composition :
(x, y) 7→ ln(x2 + y4 + 1), (x, y) 7→ exy,

(x, y) 7→ |x| et (x, y) 7→ |y| sont continues
donc par opérations (addition et quotient), f est
continue.

Représentation graphique : on représente une fonction de deux variables sous la forme de surfaces
(3D) ou par lignes de niveaux (ou lignes isoplèthes pour le terme savant) : isohypse (même hauteur)
en cartographie, isobares (même pression) en météorologie, isobathes (même profondeur) pour la
bathymétrie (les fonds marins), etc . . .
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1.2 Dérivation, classe C
1, classe C

2, gradient, matrice hessienne

f est une fonction de deux variables définie sur un ouvert O ⊂ R
2

Définition : pour (x0, y0) ∈ O
• si x 7−→ f(x, y0) est dérivable en x0, alors sa
dérivée est notéee ∂1f(x0, y0), appellée dérivée

partielle d’ordre 1 en (x0, y0) par rapport à

la première variable

• si y 7−→ f(x0, y) est dérivable en y0, alors sa
dérivée est notée ∂2f(x0, y0), appellée dérivée

partielle d’ordre 1 en (x0, y0) par rapport à

la seconde variable.

Exemple : avec f(x, y) = 3x2 − 5xy

alors x 7→ f(x, 1) est dérivable en 2 et
∂1f(2, 1) = 12− 5 = 7
et y 7→ f(2, y) est dérivable en 1 et
∂2f(2, 1) = −10

Dans la pratique, on retiendra :

on calcule ∂1f(x, y) en fixant y et en dérivant par rapport à x

on calcule ∂2f(x, y) en fixant x et en dérivant par rapport à y

Définition : on définit des fonctions dérivées

partielles d’ordre 1, les fonctions ∂1f et ∂2f

sur O sous réserve d’existence de dérivées en tout
point de O
dans ce cas, ∂1f (resp. ∂2f) est appelée dérivée

partielle de f par rapport à la première

(resp. seconde) variable. Ces deux dérivées
partielles sont appelées dérivées premières de f

Exemple : avec f(x, y) = ex
2
−y+1

alors f est dérivable et pour (x, y) de R
2,

∂1f(x, y) = 2xex
2
−y+1 (forme u′(x)eu(x))

∂2f(x, y) = −ex
2
−y+1 (forme v′(y)ev(y))

Définition : dérivées partielles d’ordre 2

si f admet des dérivées premières sur O, et si
ces dérivées admettent des dérivées premières, on
dira que f admet des dérivées secondes et dans
ce cas :

• la dérivée de ∂1f par rapport à la première
variable est notée : ∂1(∂1f) = ∂2

1,1f

• la dérivée de ∂1f par rapport à la seconde va-
riable est notée : ∂2(∂1f) = ∂2

2,1f

• la dérivée de ∂2f par rapport à la première
variable est notée : ∂1(∂2f) = ∂2

1,2f

• la dérivée de ∂2f par rapport à la seconde va-
riable est notée : ∂2(∂2f) = ∂2

2,2f

ces dérivées sont appelées dérivées secondes de
f

Exemple : avec l’exemple précédent

alors f admet des dérivées secondes et pour tout
(x, y) et R2,

∂2
1,1f(x, y) = 2ex

2
−y+1 + 2x

(

2xex
2
−y+1

)

= (2 + 4x2)ex
2
−y+1

∂2
2,1f(x, y) = −2xex

2
−y+1

∂2
1,2f(x, y) = −2xex

2
−y+1

∂2
2,2f(x, y) = −

(

−ex
2
−y+1

)

= ex
2
−y+1

Définition et propriété :

f est dite de classe C
1 (respectivement de

classe C
2) sur O lorsque qu’elle admet des

dérivées premières (respectivement des dérivées
secondes) continues en tout point de O
Toute fonction de classe C

2 sur un ouvert est
aussi de classe C

1

Exemple : (x, y) 7→ ex
2
−y+1 est C

1

car ses dérivées premières sont continues par
composition d’une fonction polynomiale, donc
continue par l’exponentielle qui est continue.
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Propriété - fonctions C
2 de référence :

les fonctions fonctions polynomiales sont C
2

(et donc C
1) sur R2

Exemple : (x, y) 7→ ln(7)

e
x2 − πxy + y31

est polynomiale donc C
2

Propriétés - opérations et composition de

fonctions C
1 ou C

2 :

• la somme, le produit, le quotient (quand le
dénominateur ne s’annule pas) de fonctions de
classe C

k (k = 1 ou k = 2) sur O est de classe
C

k sur O
• si f : O → I ⊂ R et g : I → R sont de classe
C

k, alors g ◦ f l’est aussi.

Exemple : (x, y) 7→
√

x4 + y2 + 5e−xy3 est C
2

car (x, y) 7→ x4 + y2 + 5 et (x, y) 7→ −xy3 sont
polynomiales donc C

2

t 7→
√
t est C

2 sur ]0,+∞[ et t 7→ et est C
2

d’où le résultat par composition et produit de
fonctions C

2

Théorème de Schwarz :

si f est de classe C
2 sur O, alors ∂2

12f = ∂2
21f

Exemple : voir l’exemple avec le calcul des

dérivées secondes , f(x, y) = exp(x2 − y + 1)

Définition : lorsque f admet des dérivées

premières, pour tout (x, y) ∈ O, le vecteur

∇f(x, y) =

(

∂1f(x, y)

∂2f(x, y)

)

est appelé gradient

de f au point (x, y)

Exemple : avec f(x, y) = exp(x2 − y + 1)

d’après les calculs précédents,

∇f(x, y) =





2xex
2
−y+1

−ex
2
−y+1





Définition : lorsque f admet des dérivées

secondes, pour tout (x, y) ∈ O, la matrice

∇2f(x, y) =





∂2
1,1f(x, y) ∂2

1,2f(x, y)

∂2
2,1f(x, y) ∂2

2,2f(x, y)



 est

appelée matrice hessienne de f au point (x, y)

Exemple : avec le même exemple

∇2f(x, y) =





(2 + 4x2)ex
2
−y+1 −2xex

2
−y+1

−2xex
2
−y+1 ex

2
−y+1





Propriété : la matrice hessienne d’une fonction

de classe C
2 est symétrique en tout point.

Remarque : cela découle immédiatement du
théorème de Schwarz.

2 Extrema

Dans cette section, f est toujours une fonction à valeurs réelles définie sur un ouvert O

2.1 Point critique

Définition : si f est de classe C
1

un point critique de f est un point (x0, y0) ∈ O
pour lequel le gradient de f s’annule, soit

∇f(x0, y0) =

(

0

0

)

⇔







∂1f(x0, y0) = 0

∂2f(x0, y0) = 0

Exemple : avec f(x, y) = 3x2 − 5xy

alors (x, y) est point critique

⇔ ∇f(x, y) =

(

0

0

)

⇔





6x− 5y

−5x = 0



 =

(

0

0

)

⇔ (x, y) = (0, 0)
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2.2 Maximum, minimum local et global

Définitions :

on dit que f admet un minimum global, res-
pectivement un maximum global), en (x0, y0)

si, pour tout (x, y) ∈ O, f(x, y) > f(x0, y0)

respectivement, f(x, y) 6 f(x0, y0)

le minimum ou le maximum est la valeur de
f(x0, y0)

Exemple : avec f(x, y) = x2 + y2 + 1 (sur R2)

alors f(0, 0) = 1 et
∀(x, y) ∈ R

2, x2 > 0 et y2 > 0 ⇒ f(x, y) > 1

i.e. ∀(x, y) ∈ R
2, f(x, y) > f(0, 0)

donc 1 est un minimum (atteint en (0, 0))

Définitions :

on dit que f admet un minimum local, respec-
tivement un maximum local, en (x0, y0)

s’il existe un ouvert O′ ⊂ O telle que f , res-
treinte à O′, admette un minimum global, res-
pectivement un maximum global, en (x0, y0)

Remarques :

• ce sont les définitions analogues à celles des
fonctions de R dans R

• on peut avoir plusieurs extrema locaux pour
une fonction (plusieurs minima locaux ou plu-
sieurs maxima locaux). On n’a qu’un seul maxi-
mum ou minimum global, mais cette valeur peut
être atteinte en plusieurs endroits.

2.3 Condition nécessaire pour avoir un extremum

Propriété : si f admet un extremum local en
(x0, y0) ∈ O, alors (x0, y0) est un point critique :

∇f(x0, y0) =





∂1f(x0, y0)

∂2f(x0, y0)



 =





0

0





Exemple : avec f(x, y) = x2 + y2 + 1

on retrouve que le gradient s’annule en (0, 0) qui
est un minimul global (et donc a fortiori local)
car ∂1f(x, y) = 2x et ∂2f(x, y) = 2y

Conséquence pratique : dans la recherche d’extremum (cf. plus bas), on cherchera d’abord les
points critiques pour connaitre les points ≪ candidats ≫, mais cela ne suffira pas...

B il s’agit d’une condition nécessaire, mais pas suffisante. Comme pour les fonctions de R dans
R, avec la condition f ′ s’annule pour un extremum local (cf. la fonction cube).
Par exemple avec f(x, y) = x2 − y2, on trouve facilement que (0, 0) est un point critique et
f(0, 0) = 0, mais ∀x 6= 0, f(x, 0) = x2 > 0 et ∀y 6= 0, f(0, y) = −y2 < 0 donc on peut s’approcher
indéfiniment du point (0, 0) et on trouvera toujours des valeurs strictement supérieures et des
valeurs strictement inférieures à f(0, 0), ce point ne peut donc pas être un extremum local.

2.4 Condition suffisante d’existence d’un extremum et point selle

Dans cette section, f est de classe C
2. On sait déjà qu’en tout point (x, y),∇2f(x, y) la matrice

hessienne de f en (x, y) est symétrique, donc .

Propriété - condition suffisante d’existence d’un maximum

on suppose que (x0, y0) est un point critique de f et on pose H = ∇2f(x0, y0) :

• si les valeurs propres de H sont toutes
⊲ strictement positives alors f admet un minimum local en (x0, y0)

⊲ strictement négatives alors f admet un maximum local en (x0, y0)

• si H admet 2 valeurs propres non nulles et de signes opposés, alors f n’admet pas d’extremum
en (x0, y0) mais admet un point selle (ou point col) en (x0, y0)
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Remarque : si une des deux valeurs propres est nulle, on ne peut rien conclure : il faut étudier le
signe de f(x, y)− f(x0, y0) au cas par cas.

Exemple : soit f définie par f(x, y) = 3xy − x3 − y3 alors

alors ∀(x, y) ∈ R
2,∇f(x, y) =





3(y − x2)

3(x− y2)



 donc ∇f(x, y) =





0

0



 ⇔







y = x2

x = y2
⇔







y = y4

x = y2

donc f admet pour points critiques (0, 0) et (1, 1)

alors ∀(x, y) ∈ R
2,∇2f(x, y) =





−6x 3

3 −6x



 donc H(0, 0) =





0 3

3 0



 et H(1, 1) =





−6 3

3 −6





• au point (0, 0), det(H(0, 0)− λI2) = λ2 − 9 = (λ− 3)(λ+ 3)
les valeurs propres sont −3 et 3, donc de signes strictement opposés et donc f admet un point selle

• au point (1, 1), det(H(1, 1)− λI2) = (−6− λ)2 − 32 = (λ+ 6− 3)(λ+ 6 + 3) = (λ+ 3)(λ+ 9)
les valeurs propres sont −3 et −9, donc strictement négatives et donc f admet maximum local

La recherche d’extremum est le sujet d’étude n̊ 1 dans ce chapitre et on rencontrera fréquemment
la démarche suivante.

Méthode classique :

1) on montre que f est C
2 avec les théorèmes généraux,

2) on détermine le(s) point(s) critique(s) de f (alors candidat(s) au statut d’extremum),

3) on détermine les valeurs propres de la matrice hessienne de chaque point critique et on conclut
sur son statut : minimum local, minimum global ou point selle (point col),

4) on poursuit éventuellement l’étude pour déterminer si on peut passer au statut d’extremum
global (différentes méthodes pour établir des inégalités sur la fonction).

Analogie avec les fonctions de R dans R pour la recherche d’extremum local

Fonction de R dans R Fonction de R
2 dans R

Condition nécessaire d’exis-

tence d’un extremum local

f ′ s’annule le gradient de f s’annule (point
critique)

Condition suffisante d’exis-

tence d’un maximum local

en a :

f ′(a) = 0 et f ′′(a) < 0

en (a, b) : ∇f(a, b) = (0, 0) et les
valeurs propres de ∇2f(a, b) sont
strictement négatives

Condition suffisante d’exis-

tence d’un minimum local

en a :

f ′(a) = 0 et f ′′(a) > 0

en (a, b) : ∇f(a, b) = (0, 0) et les
valeurs propres de ∇2f(a, b) sont
strictement positives

3 Fonction continue sur une partie fermée bornée

Définitions : une partie F de R
2 est dite fermée si son complémentaire R

2\F est ouvert.
Dans la pratique : [0, 1]× [0, 1],R2,R+ × R+ sont des fermés de R

2

Une partie F de R
2 est dite bornée si ∃M ∈ R+, ∀(x, y) ∈ F,max(|x|, |y|) 6 M

Propriété (comme pour les fonctions de R dans R) :

une fonction continue sur une partie fermée bornée de R
2 est bornée et atteint ses bornes.

B les résultats de la section 2 sont valables sur des ouverts.
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Un peu de théorie

Distance et parties ouvertes de R
2

Définitions : on appelle distance (euclidienne) entre deux points (x, y) et (x0, y0) de R
2 le nombre,

d
(

(x, y), (x0, y0)
)

=
√

(x− x0)2 + (y − y0)2

pour r ∈ R+, on appelle disque de centre (x0, y0) et de rayon r l’ensemble
{

(x, y) ∈ R
2, d

(

(x, y), (x0, y0)
)

6 r
}

Définition : un ouvert non vide O ⊂ R
2 est une partie de R

2 dans laquelle on peut, pour tout
point (x0, y0) ∈ O inclure un disque de centre (x0, y0) et d’un certain rayon r > 0

Remarques : en résumé pour qu’une partie de R2 soit un ouvert, il faut qu’il y ait ≪ au moins un peu
de place ≫ autour de chaque point.
La continuité, la classe C

1, C
2, les points critiques, etc... sont exclusivement étudiés sur des ouverts

non vides de R
2. Dans ce chapitre, O désigne toujours ce type d’ouvert.

Continuité

Comme pour les fonctions de R dans R, la continuité en un point signifie qu’on se rapproche de la
valeur du point quand on se rapproche du point :

Définition :

une fonction f : O2 → R est dite continue en (x0, y0) ∈ R
2 si f(x, y) −−−−−−−−→

(x,y)→(x0,y0)
f(x0, y0)

Pour préciser la notion (x, y) → (x0, y0), cette définition s’écrit avec des quantificateurs :

∀ε > 0, ∃α > 0, ∀(x, y) ∈ O : d
(

(x, y), (x0, y0)
)

< α =⇒ |f(x, y)− f(x0, y0)| < ε

Une fonction de deux variables est continue sur O si elle l’est en tout point de O

Développement limité

Pour une fonction de f de classe C
1 sur un ouvertO, et (x0, y0) ∈ O, on peut définir un développement

limité de f à l’ordre 1 qui s’écrit :

Propriété :

f(x0 + h, y0 + k) = f(x0, y0) +
t[∇f(x0, y0)].

(

h

k

)

+
√
h2 + k2ε(h, k)

avec ε(h, k) −−−−−−→
(h,k)→(0,0)

ε(0, 0) = 0
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