ECG 2 - mathématiques appliquées

Février 2026

Chapitre 12 - fonctions numériques de deux variables réelles

e détermimer les éventuels points critiques

propres de la matrice hessienne

Objectifs d’apprentissage - A la fin de ce chapitre, je sais :

e justifier le caractere €1, ¢* d’une fonction & deux variables O
e calculer les dérivées partielles du premier ordre (gradient) d’une fonction de deux variables [
e calculer la matrice hessienne d’une fonction de deux variables U

n

e déterminer la nature d’un point critique (extremum local ou non) a I’aide de I’étude des valeurs

n

Dans tout le chapitre, f désignera une fonction de deux variables, on écrira donc f(z,y), et une
fonction < numérique > c’est-a-dire a valeurs dans R
Elle sera généralement définie sur R? ou sur O, un < ensemble ouvert > de R?

1 Continuité, dérivation, classe €', ¢

1.1 Continuité

Voir la fin du chapitre pour la définition de la continuité.

Propriété - fonctions continues de référence :

les fonctions de deux variables suivantes sont
continues sur R?

e les fonctions (x,y) — z et (x,y) — y, appelées

fonctions coordonnées.
N M

e les fonctions du type (z,y) — Z Z Ai 'y’
i=0 j=0
appelée fonctions polynomiales

Exemples :
(z,y) —
(z,y) —

(z,y) =

Propriétés - opérations et composition de

fonctions continues :

e la somme, le produit, le quotient (quand
le dénominateur ne s’annule pas) de fonctions
continues sur O est continue sur O

osi f: O—1CRetg: I — Rsont continues,
alors g o f 'est aussi.

autrement dit, la composée (lorsque cela a un
sens) de deux fonctions continues est continue.

Exemple : pour (z,y) € R?, on définit f par

(e +yt 1) e

Hey) = =

Représentation graphique

: on représente une fonction de deux variables sous la forme de surfaces
(3D) ou par lignes de niveaux (ou lignes isoplethes pour le terme savant) :

isohypse (méme hauteur)

en cartographie, isobares (méme pression) en météorologie, isobathes (méme profondeur) pour la

bathymétrie (les fonds marins), etc ...




1.2 Dérivation, classe €', classe ¥, gradient, matrice hessienne

f est une fonction de deux variables définie sur un ouvert @ C R?

Définition : pour (zo,y0) € O

o si x — f(x,y0) est dérivable en zy, alors sa
dérivée est notéee 0 f(xo,yo), appellée dérivée
partielle d’ordre 1 en (zg,yo) par rapport a
la premiere variable

o si y — f(xg,y) est dérivable en yp, alors sa
dérivée est notée O f(xg,yo), appellée dérivée
partielle d’ordre 1 en (zg,yy) par rapport a
la seconde variable.

Exemple :

Dans la pratique, on retiendra :

on calcule 0; f(z,y) en fixant y et en dérivant par rapport a x

on calcule Oy f(z,y) en fixant = et en dérivant par rapport a y

Définition : on définit des fonctions dérivées
partielles d’ordre 1, les fonctions 0, f et 0o f
sur O sous réserve d’existence de dérivées en tout
point de O

dans ce cas, 01 f (resp. 02 f) est appelée dérivée
partielle de f par rapport a la premieére
(resp. seconde) variable. Ces deux dérivées
partielles sont appelées dérivées premieres de f

Exemple :

Définition : dérivées partielles d’ordre 2

si f admet des dérivées premieres sur O, et si
ces dérivées admettent des dérivées premieres, on
dira que f admet des dérivées secondes et dans
ce cas :

e la dérivée de O, f par rapport a la premiere

variable est notée : 91 (0, f) = 9, f

e la dérivée de 0, f par rapport a la seconde va-
riable est notée : 0y(0y f) = 05, f

e la dérivée de O,f par rapport a la premiere
variable est notée : 0;(0yf) = (’3%72 f

e la dérivée de O, f par rapport a la seconde va-

riable est notée : Oy (0o f) = (922,2]‘1

ces dérivées sont appelées dérivées secondes de

S

Exemple :

Définition et propriété :

f est dite de classe %' (respectivement de
classe ©€?) sur O lorsque quelle admet des
dérivées premieres (respectivement des dérivées
secondes) continues en tout point de O

Toute fonction de classe €2 sur un ouvert est
aussi de classe €

Exemple :




Propriété - fonctions €2 de référence : Exemple :
les fonctions fonctions polynomiales sont €

(et donc €*) sur R?

Propriétés - opérations et composition de Exemple :
fonctions €* ou €* :

e la somme, le produit, le quotient (quand le
dénominateur ne s’annule pas) de fonctions de

classe €% (k = 1 ou k = 2) sur O est de classe

€* sur O

esif: O—=ITCRetg: I— Rsontde classe

€*, alors g o f 'est aussi.

Théoreme de Schwarz : Exemple : voir l'exemple avec le calcul des

si f est de classe €2 sur O, alors 9%, f = 03, f

dérivées secondes

Définition : lorsque f admet des dérivées Exemple :
premieres, pour tout (z,y) € O, le vecteur
o f(z,y)
Vf(z,y) = ( ’ est appelé gradient
a2.]1.(':(77 y)
de f au point (z,y)
Définition : lorsque f admet des dérivées Exemple :
secondes, pour tout (z,y) € O, la matrice
02 f(x, 0%, f(x,
VQf(x’y) _ ;1f( Y) zzf( Y) est
a2,1f(557 Y) aQ,zf(xa Y)
appelée matrice hessienne de f au point (z,y)
Propriété : la matrice hessienne d’une fonction | Remarque : cela découle immédiatement du

de classe €? est symétrique en tout point.

théoréme de Schwarz.

2 Extrema

Dans cette section, f est toujours une fonction a valeurs réelles définie sur un ouvert O

2.1 Point critique

Définition : si f est de classe €*

un point critique de f est un point (z, o) € O
pour lequel le gradient de f s’annule, soit

0) 01 f (0, %0)
=

V f(xo, o) = (0 Do f (0, Y0)

=0
=0

Exemple :




2.2 Maximum, minimum local et global

Définitions :
on dit que f admet un minimum global, res-
pectivement un maximum global), en (g, yo)

si, pour tout (z,y) € O, f(z,y) = f(zo,Yo)

flz,y) < f(xo,y0)
le minimum ou le maximum est la valeur de

f (o, y0)

respectivement,

Exemple : avec f(x,y) = 2° + y*> + 1 (sur R?)

Définitions :

on dit que f admet un minimum local, respec-
tivement un maximum local, en (xg, yo)

il existe un ouvert @ C O telle que f, res-
treinte & O, admette un minimum global, res-
pectivement un maximum global, en (xg, yo)

Remarques :

e ce sont les définitions analogues a celles des
fonctions de R dans R

e on peut avoir plusieurs extrema locaux pour
une fonction (plusieurs minima locaux ou plu-
sieurs maxima locaux). On n’a qu'un seul maxi-

mum ou minimum global, mais cette valeur peut
étre atteinte en plusieurs endroits.

2.3 Condition nécessaire pour avoir un extremum

Propriété : si f admet un extremum local en | Exemple : avec f(z,y) = 2* +13° + 1
(x0,%0) € O, alors (g, yo) est un point critique :

o f (o, yo) 0
V f(xo, y0) = =

92 f (0, o) 0

Conséquence pratique : dans la recherche d’extremum (cf. plus bas), on cherchera d’abord les
points critiques pour connaitre les points < candidats >, mais cela ne suffira pas...

A\ il s’agit d’'une condition nécessaire, mais pas suffisante. Comme pour les fonctions de R dans
R, avec la condition f’ s’annule pour un extremum local (cf. la fonction cube).

Par exemple avec f(z,y) = 2° — y?, on trouve facilement que (0,0) est un point critique et
£(0,0) =0, mais Vo # 0, f(x,0) = 2> > 0 et Yy # 0, (0,y) = —y* < 0 donc on peut s’approcher
indéfiniment du point (0,0) et on trouvera toujours des valeurs strictement supérieures et des
valeurs strictement inférieures a f(0,0), ce point ne peut donc pas étre un extremum local.

2.4 Condition suffisante d’existence d’un extremum et point selle

Dans cette section, f est de classe €. On sait déja qu’en tout point (x,y), V2f(x,y) la matrice
hessienne de f en (x,y) est symétrique, donc

Propriété - condition suffisante d’existence d’un maximum

on suppose que (g, o) est un point critique de f et on pose H = V2 f(z0,%0) :

e si les valeurs propres de H sont toutes
> strictement positives alors f admet un minimum local en (xg, o)

> strictement négatives alors f admet un maximum local en (zg, yo)

e si H admet 2 valeurs propres non nulles et de signes opposés, alors f n’admet pas d’extremum
en (xo, yp) mais admet un point selle (ou point col) en (xg, yo)




Remarque : si une des deux valeurs propres est nulle, on ne peut rien conclure : il faut étudier le
signe de f(z,y) — f(zo,y0) au cas par cas.

Exemple : soit f définie par f(z,y) = 3zy — 2* — ¢* alors
) 0
alors V(z,y) € R, Vf(x,y) = donc Vf(z,y) = &
0
donc f admet

alors V(z,7y) € R, V2 f(z,y) = donc

e au point
les valeurs propres sont
e au point
les valeurs propres sont

La recherche d’extremum est le sujet d’étude n’1 dans ce chapitre et on rencontrera fréquemment
la démarche suivante.

Méthode classique :

1) on montre que f est €2 avec les théoremes généraux,
2) on détermine le(s) point(s) critique(s) de f (alors candidat(s) au statut d’extremum),

3) on détermine les valeurs propres de la matrice hessienne de chaque point critique et on conclut
sur son statut : minimum local, minimum global ou point selle (point col),

4) on poursuit éventuellement 1’étude pour déterminer si on peut passer au statut d’extremum
global (différentes méthodes pour établir des inégalités sur la fonction).

Analogie avec les fonctions de R dans R pour la recherche d’extremum local

Fonction de R dans R Fonction de R? dans R

Condition nécessaire d’exis- | f’ s’annule le gradient de f s’annule (point
tence d’un extremum local critique)

Condition suffisante d’exis- | en a : en (a,b) : Vf(a,b) = (0,0) et les
tence d’un maximum local | /() =0 et f"(a) <0 valeurs propres de V?f(a,b) sont

strictement négatives

Condition suffisante d’exis- | en a : en (a,b) : Vf(a,b) = (0,0) et les
tence d’un minimum local fla)=0et f"(a) >0 valeurs propres de V?f(a,b) sont

strictement positives

3 Fonction continue sur une partie fermée bornée

Définitions : une partie F de R? est dite fermée si son complémentaire R*\ F est ouvert.
Dans la pratique : [0,1] x [0,1], R, R, x R sont des fermés de R?
Une partie F' de R? est dite bornée si IM € R, V(z,y) € F,max(|z], |y|) < M

Propriété (comme pour les fonctions de R dans R) :

une fonction continue sur une partie fermée bornée de R? est bornée et atteint ses bornes.

/A les résultats de la section 2 sont valables sur des ouverts.



Un peu de théorie

Distance et parties ouvertes de R?

Définitions : on appelle distance (euclidienne) entre deux points (z,y) et (x, yo) de R? le nombre,

a (9. (0.90)) = V(& =20 + (s = )’

pour r € R, on appelle disque de centre (zy,yy) et de rayon r l’ensemble

{(@.y) e R d((2,9). (w0.m)) <}

Définition : un ouvert non vide @ C R? est une partie de R? dans laquelle on peut, pour tout
point (zg, ) € O inclure un disque de centre (g, 7o) et d’'un certain rayon r > 0

Remarques : en résumé pour qu'une partie de R? soit un ouvert, il faut qu’il y ait < au moins un peu
de place > autour de chaque point.

La continuité, la classe €', €2, les points critiques, etc... sont exclusivement étudiés sur des ouverts
non vides de R?. Dans ce chapitre, @ désigne toujours ce type d’ouvert.

Continuité

Comme pour les fonctions de R dans R, la continuité en un point signifie qu'on se rapproche de la
valeur du point quand on se rapproche du point :

Définition :

une fonction f: O* — R est dite continue en (z¢, 1) € R? si f(z,%) ﬁ f (o, v0)
z,y)—(Zo,Yo

Pour préciser la notion (x,y) — (xg, y0), cette définition s’écrit avec des quantificateurs :

Ve >0, Ja >0, Y(z,y) € O: d((:c,y),(xo,yo)) <a=|f(z,y) — f(zo,y0)| <&

Une fonction de deux variables est continue sur O si elle I'est en tout point de O

Développement limité

Pour une fonction de f de classe " sur un ouvert O, et (z9, o) € O, on peut définir un développement
limité de f a l'ordre 1 qui s’écrit :

Propriété :

o+ o+ ) = Foocw) + 9 (ol () + VITF R0 1)

avec ¢(h,k) —— £(0,0) =0
(hyk)—(0,0)




