Applications du Binôme de Newton

- 1. Soient $n, p \ge 1$. Redémontrer que $\binom{n-1}{p-1} = \frac{p}{n} \binom{n}{p}$.
- 2. Pour $n \in \mathbb{N}$ et a, b réels non nuls, simplifier les expressions suivantes : (n+1)! - n!; $\frac{(n+3)!}{(n+1)!}$; $\frac{n+2}{(n+1)!} - \frac{1}{n!}$; $\frac{u_{n+1}}{u_n}$ où $u_n = \frac{a^n}{n!b^{2n}}$.
- 3. (a) Développer $(x + 1)^6$, $(x 1)^6$.
 - (b) Démontrer que, pour tout entier n, on a $\sum_{p=0}^{n} {n \choose p} = 2^n$.
 - (c) Démontrer que, pour tout entier n, on a $\sum_{p=0}^{n} {n \choose p} 2^p = 3^n$.
 - (d) Démontrer que, pour tout entier n, on a $\sum_{k=1}^{2n} {2n \choose k} (-1)^k 2^{k-1} = 0$.
- 4. Montrer que $(\sqrt{2} \sqrt{3})^4 = 49 20\sqrt{6}$.
- 5. Calculer pour $n \in \mathbb{N}^*$ et $k \in [[0, n]]$, la somme : $S_k = \sum_{p=0}^k (-1)^p \binom{n}{n-p} \binom{n-p}{n-p}$.
- 6. Soit $n \in \mathbb{N}$ et $(a, b) \in \mathbb{R}^2$. Calculer les sommes suivantes :

$$S_n = \sum_{k=0}^n k \binom{n}{k} a^k b^{n-k}, T_n = \sum_{k=0}^n k(k-1) \binom{n}{k} a^k b^{n-k}$$

En déduire les sommes : $U_n = \sum_{k=0}^n k \binom{n}{k}$ et $V_n = \sum_{k=0}^n k^2 \binom{n}{k}$.

- 7. On pose les matrices pour tous $(a,b) \in \mathbb{R}^2$, $A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$ et $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
 - (a) Soit $k \in \mathbb{N}$, calculer I^k (conjecturer une formule et la prouver par récurrence).

 - (b) Écrire A, A^2 et A^3 en fonction de I et J. (c) Montrer que $\forall n \in \mathbb{N}^*, \sum_{k=1}^n \binom{n}{k} 3^{k-1} b^k (a-b)^{n-k} = \frac{1}{3} [(a+2b)^n (a-b)^n].$
 - (d) En déduire, A^n en fonction de I et J.
- 8. On considère les matrices : $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.
 - On pose T = D + N.
 - (a) Déterminer N^2 .
 - (b) Utiliser la formule du binôme pour montrer que : $\forall n \in \mathbb{N}^*, T^n = D^n + nD^{n-1}N$.
- 9. On pose T = D + N.
 - (a) Déterminer N^2 .
 - (b) Utiliser la formule du binôme pour montrer que : $\forall n \in \mathbb{N}^*, T^n = D^n + nD^{n-1}N.$
- 10. Calculer la puissance n-ième de $T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, pour n entier positif. Faire de même avec n entier négatif, si cela est possible.