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Concours Blanc 1 : CORRECTION

Exercice 1 – 1. Initialisation a1 +b1 + c1 =
J
8 +0+ J

8 =
o
8 = 1. Hérédité Soit n ∈ N∗. Supposons

que an +bn + cn = 1. A l’aide des relations de récurrence :

an+1 +bn+1 + cn+1 =
2

11an +
3
11bn +

3
11cn +

4
11an +

3
11bn +

4
11cn +

5
11an +

5
11bn +

4
11

= ( 2
11 +

4
11 +

5
11)an +( 3

11 +
3

11 +
5

11)bn +( 3
11 +

4
11 +

4
11)cn

= an +bn + cn

= 1

Par le principe de récurrence, pour tout n ∈ N∗
,∀n ∈ N∗

,an +bn + cn = 1.
2. Pour tout n ∈ N∗

,xn = an +bn + cn = 1, donc la suite (xn)n⩾1 est constante égale à 1 .
3. (a) Soit n ∈ N∗.

yn+1 = −an+1 +2bn+1 − cn+1

=
−2
11 an +

−3
11 bn +

−3
11 cn +

8
11an +

6
11bn +

8
11cn +

−5
11 an +

−5
11 bn +

−4
11

= (−2
11 +

8
11 +

−5
11 )an +(−3

11 +
6

11 +
−5
11 )bn +(−3

11 +
8
11 +

−4
11 )cn

=
1
11an +

2
11bn +

1
11cn

= −
1
11 (−an +2bn − cn)

= −
1
11yn.

Ainsi la suite (yn)n⩾1 est bien géométrique de raison − 1
11 .

(b) En tant que suite géométrique de raison − 1
11 ,∀n ∈ N∗

, yn = y1 (− 1
11)

n−1
.

Or y1 = −a1 +2b1 − c1 =
−3
8 +0+ −5

8 = −1. Donc ∀n ∈ N∗
,yn = −(− 1

11)
n−1

.
4. (a) Soit n ∈ N∗.

zn+1 = −5an+1 −5bn+1 +7cn+1

=
−10
11 an +

−15
11 bn +

−15
11 cn +

−20
11 an +

−15
11 bn +

−20
11 cn +

35
11an +

35
11bn +

28
11

= (−10
11 +

−20
11 +

35
11)an +(−15

11 +
−15
11 +

35
11)bn +(−15

11 +
−20
11 +

28
11)cn

=
5

11an +
5
11bn +

−7
11 cn

= −
1
11 (−5an −5bn +7cn)

= −
1
11zn.

Ainsi la suite (zn)n⩾1 est aussi géométrique de raison − 1
11 .

(b) En tant que suite géométrique de raison − 1
11 ,∀n ∈ N∗

, zn = z1 (− 1
11)

n−1
. Or z1 = −5a1 −

5b1 +7c1 =
−15

8 +0+ 35
8 =

20
8 =

5
2 . Donc ∀n ∈ N∗

,zn =
5
2 (−

1
11)

n−1
.



5. (a) Soit n ∈ N∗.

1
3 (xn + yn) =

1
3 (an +bn + cn −an +2bn − cn) =

1
3 ×3bn = bn

et

1
12 (5xn + zn) =

1
12 (5an +5bn +5cn −5an −5bn +7cn) =

1
12 ×12bn = cn

Ainsi ∀n ∈ N∗
, bn =

1
3 (xn + yn) et cn =

1
12 (5xn + zn).

(b) D’après la question 2., la suite (xn)n⩾1 est constante. Donc pour tout n ∈ N∗
,an = 1−bn − cn

Alors

an = 1−
1
3 (xn + yn)−

1
12 (5xn + zn)

= 1−(1
3 +

5
12)xn −

1
3yn −

1
12zn

= 1−
3
4xn −

1
3yn −

1
12zn.

Donc ∀n ∈ N∗
,an = 1− 3

4 xn −
1
3 yn −

1
12 zn.

(c) A l’aide des questions précédentes :

an = 1−
3
4xn −

1
3yn −

1
12zn

= 1−
3
4 −

1
3 ×(−(− 1

11)
n−1

)− 1
12 ×

5
2 (− 1

11)
n−1

=
1
4 +(1

3 −
1
12 ×

5
2)(−

1
11)

n−1

=
1
4 +

1
8 (− 1

11)
n−1

,

bn =
1
3xn +

1
3yn

=
1
3 +

1
3 ×(−(− 1

11)
n−1

)

=
1
3 −

1
3 (− 1

11)
n−1

et

cn =
5

12xn +
1
12zn

=
5

12 +
1

12 ×
5
2 (− 1

11)
n−1

=
5

12 +
5

24 (− 1
11)

n−1

.

Au final, pour tout n ∈ N∗,

an =
1
4 +

1
8 (− 1

11)
n−1

, bn =
1
3 −

1
3 (− 1

11)
n−1

et cn =
5
12 +

5
24 (− 1

11)
n−1

.

6. Comme −1 < − 1
11 < 1, alors limn→+∞ (− 1

11)
n
= 0, ainsi limn→+∞ an =

1
4 , limn→+∞ bn =

1
3

et limn→+∞ cn =
5

12 .



Exercice 2 – .
1.(a)

(M+ I3)2
=

⎛
⎜⎜
⎝

1 1 1
1 1 1
1 1 1

⎞
⎟⎟
⎠

2

=

⎛
⎜⎜
⎝

3 3 3
3 3 3
3 3 3

⎞
⎟⎟
⎠
= 3(M+ I3) .

Ainsi (M+ I3)2 −3(M+ I3) = 03, c’est-à-dire (M+ I3)(M−2I3) = 03.
Donc M2 +2M+ I3 −3M−3I3 = 0
On en déduit que M2 −M = 2I3
Et donc, M(M− I3) = 2I3
La matrice M est donc inversible et son inverse est M−1

=
1
2(M− I3)

(b) On pose Q =
1
3

⎛
⎜⎜
⎝

1 −2 1
1 1 −2
1 1 1

⎞
⎟⎟
⎠

. Alors PQ = QP = I3.

Ainsi P est inversible et P−1
= Q =

1
3

⎛
⎜⎜
⎝

1 −2 1
1 1 −2
1 1 1

⎞
⎟⎟
⎠

.

(c) Après calcul on obtient, D =

⎛
⎜⎜
⎝

−1 0 0
0 −1 0
0 0 2

⎞
⎟⎟
⎠

(d) On procède par récurrence sur k ∈ N. Initialisation. Pour k = 0,M0
= I3 = PI3P−1

= PD0P−1.
Hérédité. Soit k ∈N. Supposons Mk

= PDkP−1. Alors, d’après la question précédente, M = PDP−1,
donc

Mk+1
= MMk

= PDP−1
⋅PDkP−1

= PDDkP−1
= PDk+1P−1

.

Donc par le principe de récurrence, pour tout k ∈ N,Mk
= PDkP−1.

(e) Soit k ∈N. Pour déterminer ak et bk, on peut par exemple calculer les deux premiers coefficients
de la première ligne de Mk, et les comparer avec ceux de akM + bkI3. Comme D étant diago-

nale, Dk
=

⎛
⎜⎜⎜
⎝

(−1)k 0 0
0 (−1)k 0
0 0 2k

⎞
⎟⎟⎟
⎠

. Puis Mk
= PDkP−1

= P 1
3

⎛
⎜⎜⎜
⎝

(−1)k −2(−1)k (−1)k

(−1)k (−1)k −2(−1)k

2k 2k 2k

⎞
⎟⎟⎟
⎠
=

1
3

⎛
⎜⎜
⎝

2(−1)k +2k 2k − (−1)k ck
dk ek fk
gk hk ik

⎞
⎟⎟
⎠

, où ck,dk,ek, fk,gk,hk, ik sont des coefficients qu’on ne cherche

pas à calculer. Par ailleurs,

akM+bkI3 =
⎛
⎜⎜
⎝

bk ak ak
ak bk ak
ak ak bk

⎞
⎟⎟
⎠
,

Donc en identifiant les coefficients : ak =
2k−(−1)k

3 et bk =
2(−1)k+2k

3 .

2. (a) On procède par récurrence sur k ∈ N∗.
Initialisation. Pour k = 1,J1

n = n0Jn.
Hérédité. Soit k ∈N∗. On suppose Jk

n = nk−1Jn. Par calcul matriciel on obtient que J2
n = nJn. Alors

Jk+1
n = Jk

nJn = nk−1Jn ⋅ Jn = nk−1
⋅nJn = nkJn.

Finalement, par le principe de récurrence, pour tout k ∈ N∗
,Jk

n = nk−1Jn.



(b) Mn = Jn − In
(c) Soit k ∈ N∗. On a Jn (−In) = (−In)Jn, donc par la formule du binôme de Newton,

Mk
n = (Jn − In)k

=

k

∑
i=0

(k
i)Ji

n (−In)k−i

=

k

∑
i=0

(k
i)(−1)k−iJi

n

= (−1)kIn +(
k

∑
i=1

(k
i)(−1)k−ini−1)Jn

Ainsi ∀k ∈ N∗
,Mk

n = (−1)kIn +(
k

∑
i=1

(k
i)(−1)k−ini−1)Jn.

(d) Soit k ∈ N∗. En utilisant la formule du binôme de Newton :

ck =

k

∑
i=1

(k
i)ni−1(−1)k−i

=
1
n

k

∑
i=1

(k
i)ni(−1)k−i

=
1
n (

k

∑
i=0

(k
i)ni(−1)k−i

− (−1)k)

=
(n−1)k + (−1)k+1

n .

∀k ∈ N∗
,ck =

(n−1)k + (−1)k+1

n .

(e) Pour tout k ∈ N∗
,Mk

n = ckJn + (−1)kIn.

Donc les coefficients diagonaux de Mk
n sont tous égaux à ck + (−1)k

=
(n−1)k+(n−1)(−1)k

n , et les

coefficients non diagonaux de Mk
n sont égaux à ck =

(n−1)k+(−1)k+1

n .
3.

De gauche à droite, respectivement : représentation des graphes K2,K3,K4 et K5.
4. (a) D’après la définition du graphe Kn, la matrice d’adjacence de Kn est la matrice Mn.



(b) Le nombre de chaînes de longueur 4 menant du sommet 1 à lui-même est égal au coefficient
situé en première ligne et première colonne de la matrice M4

4 , c’est-à-dire, d’après la question 2.(e),
34+3(−1)4

4 = 21. Il y a donc 21 chaînes de longueur 4 menant du sommet 1 à lui-même .

Exercice 3 – .
1.

f (1) = e−1 et f (−1) = −e1
.

Par conséquent :
- f (−1) ≠ f (1) : f n’est pas paire;
- f (−1) ≠ − f (1) : f n’est pas impaire.
Conclusion : f n’est ni paire ni impaire.
2. En −∞ :

lim
x→−∞

−1
x = 0, par composée : lim

x→−∞
e−1/x

= 1

lim
x→−∞

= −∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭
ainsi: lim

x→−∞
f (x) = −∞

En 0 , à gauche : Soit x < 0. Posons X =
−1
x . Ainsi : lim

x→0
x<0

X = +∞. D’où :

lim
x→0
x<0

xe−1/x
= lim

X→+∞

eX

−X ↙ par croissance comparée

= −∞

Par conséquent :

lim
x→0
x<0

xe−1/x
= −∞

En 0 , à droite :

lim
x→0
x>0

−1
x = −∞, donc par composition : lim

x→0
x>0

e−1/x
= 0

lim
x→0
x>0

x = 0+

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
ainsi, par opérations : lim

x→0
x>0

f (x) = 0

En +∞ :

lim
x→+∞

−1
x = 0, donc par composition : lim

x→+∞
e−1/x

= 1 ainsi, par opérations ∶ lim
x→+∞

f (x)=+∞

Conclusion : C f admet une asymptote "verticale" d’équation x = 0, en 0 à gauche.
3. (a) En +∞ : Soit x suffisamment proche de +∞. On a :

f (x)− x = xe−1/x
− x = x(e−1/x

−1)



Posons X =
−1
x . Ainsi : limx→+∞ X = 0−. D’où :

lim
x→+∞

x(e−1/x
−1) = lim

X→0
X<0

−
eX −1

X = −1

Conclusion : limx→+∞( f (x)− x) = −1.
En −∞ : On procède de la même façon, pour obtenir le même résultat. Conclusion : limx→−∞( f (x)−

x) = −1.
(b) De la question précédente, on déduit:

lim
x→+∞

( f (x)− (x−1)) = 0 ; lim
x→−∞

( f (x)− (x−1)) = 0

Conclusion : la droite d’équation y = x−1 est asymptote à la courbe de f aux voisinages de ±∞.
4. f = u× exp◦v, avec u ∶ x ⟼ x et v ∶ x ⟼ −1

x . v est dérivable sur R∗, donc expov est dérivable
sur R∗. Ainsi, f , étant un produit de fonctions dérivables sur R∗, est également dérivable sur R∗.
Soit x ∈ R∗. On a :

f ′(x) = e−1/x
+ x×

1
x2 e−1/x

= e−1/x (1+
1
x)

= e−1/x x+1
x

On obtient ainsi directement :

5. Soit x > 0. Posons X =
1
x . Ainsi lim

x→0
x>0

1
x = +∞. D’où :

lim
x→0
x>0

f ′(x) = lim
x→0
x>0

e−1/x (1+
1
x)

= lim
X→+∞

e−X(1+X)

= lim
X→+∞

1+X
eX

= 0

Conclusion : lim
x→0
x>0

f ′(x) = 0.

6. (a) On a : f ′ ∶ x ⟼ e−1/x (1+ 1
x); ainsi, f est dérivable sur R∗ et pour tout x ∈ R∗ :

f ′′(x) = 1
x2 e−1/x (1+

1
x)−

1
x2 e−1/x

= e−1/x ( 1
x2 +

1
x3 −

1
x2)

=
e−1/x

x3



Détaillons les limites apparentes dans ce tableau de variations :

En −∞ :
lim

x→−∞

−1
x = 0, donc par composition : lim

x→−∞
e−1/x

= 1

lim
x→−∞

1+ 1
x = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
ainsi, par opérations : lim

x→−∞
f (x) = 1

En −∞ :
lim

x→+∞

−1
x = 0, donc par composition : lim

x→+∞
e−1/x

= 1

lim
x→+∞

1+ 1
x = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
ainsi, par opérations : lim

x→+∞
f (x) = 1

Ce tableau de variations permet bien d’obtenir le résultat voulu.
Conclusion: ∀x ∈ R∗

, f ′(x) < 1.
(b) Pour cela, posons g ∶ x ⟼ f (x)− (x−1) et étudions son signe. Puisque f est dérivable sur
R∗

,g l’est également et :

∀x ∈ R∗
,g′(x) = f ′(x)−1

D’après la question précédente, on obtient:

∀x ∈ R∗
,g′(x) < 0

Et comme la droite d’équation y = x−1 est asymptote à C f aux voisinages de ±∞, on a :

lim
x→±∞

g(x) = 0

Par conséquent :

∀x ∈]−∞;0[,g(x) < 0 ; ∀x ∈]0;+∞[,g(x) > 0

Conclusion : C f est au-dessus de la droite d’équation y = x−1 sur ]0;+∞[;
C f est au-dessous de la droite d’équation y = x−1 sur ]−∞; 0[;
C f et la droite d’équation y = x−1 n’ont aucun point d’intersection.
7.



8.

9.
Par récurrence...
Initialisation. Pour n = 0 : u0 existe et u0 = 1 ∈]0;1].
L’initialisation est ainsi vérifiée.
Hérédité. Soit n∈N. Supposons " un existe et un ∈]0;1] " et montrons " un+1 existe et un+1 ∈]0;1
".
- Par hypothèse de récurrence, un existe et un > 0; donc f (un) existe puisque f est définie sur R∗.
Autrement dit : un+1 existe.
- Également : un+1 = une−1/un ; et comme, par hypothèse de récurrence, un > 0, on a aussi un+1 > 0.
- Enfin, par hypothèse de récurrence :

0 < un ≤ 1

Puis, par croissance de f est R+
∗ , on a :

f (un) ≤ f (1)
C’est à dire :

un+1 ≤ e−1

Puisque e−1
≤ 1, on obtient (par transitivité) :

un+1 ≤ 1

Finalement : " un+1 existe et un+1 ∈]0;1] ". L’hérédité est ainsi établie.
Conclusion : pour tout n ∈ N,un existe et un ∈]0;1].
10. Soit n ∈ N. On a :



un+1 −un = un (e−1/un −1)

Or, d’après la question précédente un > 0. On a ainsi :

−
1
un

< 0

Et par stricte croissance de l’exponentielle sur R :

e−1/un
< 1

Par conséquent :

un+1 −un < 0

Conclusion : la suite (un) est strictement décroissante.
11. (a) Pour changer un peu, raisonnons pas équivalence pour transformer le résultat à établir... Soit
x ∈]0;1]. On a :

f (x) ≤ 1
e x ⟺ xe−1/x

≤
1
e x

⟺ e−1/x
≤

1
e car x > 0

⟺ e−1/x
≤ e−1

⟺ −
1
x ≤ −1 par stricte croissance de ln sur R+

∗

⟺
1
x ≥ 1

Or x ∈]0;1], donc la dernière inégalité est vraie (décroissance de la fonction inverse sur ]0;1] );
par équivalence,l’inégalité initiale est ainsi également vraie.
Conclusion : ∀x ∈]0;1], f (x) ≤ 1

e x.
Remarque: On aurait aussi pu étudier la fonction correspondant à la différence
(b) Par récurrence...
- Initialisation. Pour n = 0 : u0 = 1 et ( 1

e)
0
= 1; par conséquent, u0 ≤ (1

e)
0
. L’initialisation est

vérifiée.
- Hérédité. Supposons que un ≤ (1

e)
n

pour un certain n ∈ N, et montrons que un+1 ≤ ( 1
e)

n+1
.

Par hypothèse de récurrence, on a :

un ≤ (1
e)

n

D’où, puisque 1
e > 0 :

1
e un ≤ (1

e)
n+1

Mais un ∈]0;1 ] d’après la question 3 , donc, d’après la question précédente :

f (un) ≤
1
e un

Par transitivité, on a ainsi :

f (un) ≤ (1
e)

n+1



Autrement dit :

un+1 ≤ (1
e)

n+1

L’hérédité est établie.
Conclusion: ∀n ∈ N,un ≤ ( 1

e)
n
.

(c) On a:

∀n ∈ N,0 < un ≤ ( 1
e)

n

limn→+∞ ( 1
e)

n
= 0,car 1

e ∈]−1;1[ }
ainsi, par théorème d’encadrement:

lim
n→+∞

un = 0

Conclusion : la suite (un) converge vers 0 .
(d) - Soit n ∈ N. On a :

(1
e)

n

≤ 10−20
⟺ n ln(1

e) ≤ −20ln(10) par stricte croissance de ln sur R+
∗

⟺ −n ≤ −20ln(10)
⟺ n ≥ 20ln(10)

Conclusion : ( 1
e)

n
≤ 10−20 lorsque n ≥ 20ln(10).

- Interprétation :
On sait que pour tout n ∈ N,un ≤ ( 1

e)
n
. Ainsi, d’après ce qui précède (et par transitivité) :

∀n ≥ 20ln(10),un ≤ 10−20

Conclusion : on peut affirmer que pour tout n ≥ 45,un ≤ 10−20.
(e) On peut déjà dire que le programme s’arrêtera forcément, puisque (un) converge vers 0 . Il
existe donc un rang à partir duquel un est toujours inférieur ou égal à 10−20.
Ici, 4 est d’ailleurs le premier rang à partir duquel c’est vrai.
Comparaison avec la valeur précédente : il est naturel de trouver une valeur inférieure à la question
précédente; puisque dans la question précédente, nous avions utilisé une majoration de un (établie à
la question 5(b)) pour obtenir cette information.
12. (a) Soit n ∈ N. On a :

Sn+1 −Sn =

n+1

∑
k=0

uk −
n

∑
k=0

uk = un+1

Or un+1 > 0 . . .
Conclusion : la suite (Sn) est croissante.
(b) Soit n ∈ N. On avait obtenu, à la question 5(b) :

∀k ∈ N,uk ≤ (e−1)n

D’où, en sommant sur J0;nK :

n

∑
k=0

uk ≤

n

∑
k=0

(e−1)n

Or:



n

∑
k=0

(e−1)n
=

1− e−n−1

1− e−1

=
e− e−n

e−1

=
e

e−1 −
e−n

e−1

Or e−n

e−1 > 0, d’où :

n

∑
k=0

(e−1)n
≤

e
e−1

Conclusion : la suite (Sn) est majorée (par e
e−1 ).

(c) Étant croissante et majorée, le théorème de convergence monotone permet d’obtenir que la suite
(Sn) est convergente.

Exercice 4 – 1. Commençons par calculer la matrice

M =

⎛
⎜⎜
⎝

0 1 1
2 1 2
2 2 1

⎞
⎟⎟
⎠
.

On a :

M2
=

⎛
⎜⎜
⎝

4 3 3
6 7 6
6 6 7

⎞
⎟⎟
⎠
.

Donc

A2
=

1
16

M2
=

1
16

⎛
⎜⎜
⎝

4 3 3
6 7 6
6 6 7

⎞
⎟⎟
⎠
.

Cherchons x,y ∈ R tels que

A2
= xA+ yI3.

Or

xA+ yI3 =
x
4

⎛
⎜⎜
⎝

0 1 1
2 1 2
2 2 1

⎞
⎟⎟
⎠
+ y

⎛
⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟
⎠
.

En identifiant les coefficients, on obtient le système :

{ y = 4
16 =

1
4

x
4 =

3
16

⟹ x =
3
4 ,y =

1
4 .

Donc

A2
=

3
4A+

1
4 I3.

2. On a montré que A2 est combinaison linéaire de A et I3. Supposons que, pour un certain n,



An
= xnA+ ynI3.

Alors

An+1
= A(xnA+ ynI3) = xnA2

+ ynA.

En utilisant A2
=

3
4 A+ 1

4 I3,

An+1
= (3

4xn + yn)A+
1
4xnI3.

Donc il existe bien xn+1,yn+1. Par récurrence :

∀n ∈ N,An
= xnA+ ynI3.

3. - A0
= I3 ⇒ x0 = 0,y0 = 1 - A1

= A ⇒ x1 = 1,y1 = 0
D’après le calcul précédent :

{ xn+1 =
3
4 xn + yn

yn+1 =
1
4 xn

On élimine yn :

xn+2 =
3
4xn+1 +

1
4xn.

4. L’équation caractéristique est :

r2
−

3
4r−

1
4 = 0 ⟺ (r−1)(r+

1
4) = 0.

Donc

xn = a ⋅1n
+b(−1

4)
n

.

Avec x0 = 0,x1 = 1, on trouve :

a =
4
5
, b = −

4
5

Ainsi :

xn =
4
5
(1−(−1

4)
n

)

Or yn+1 =
1
4 xn, donc

yn =
1
5
+

4
5
(−1

4)
n

5. On conclut :

An
=

4
5
(1−(−1

4)
n

)A+(1
5
+

4
5
(−1

4)
n

) I3 (n ∈ N)


