
Chapitre 16 : Continuité d’une fonction
Dans tout ce chapitre, I désigne un intervalle de R.

1 Fonctions continues
1.1 Continuité en un point

Définition 1.1 Soient f ∶ I → R une fonction et a ∈ I.
1. On dit que f est continue à droite en a lorsque

lim
x→a+

f (x) = f (a)

2. On dit que f est continue à gauche en a lorsque

lim
x→a−

f (x) = f (a)

3. On dit que f est continue en a lorsque, de manière équivalente,
• soit lorsque f admet une limite finie en a et

lim
x→a
x≠a

f (x) = f (a).

• soit lorsque f est continue à droite en a et elle est continue à gauche en a.

? La notion de continuité formalise le fait que l’on peut tracer la courbe de la fonction “sans lever le
crayon”. Autrement dit, là où la fonction comporte des “trous”, elle est discontinue.

Représentation d’une fonction continue. Représentation d’une fonction non continue.

Exemple 1.2 Montrer que la fonction partie entière n’est pas continue en 2.

• D’une part, ⌊2⌋ = 2.
• D’autre part,

∀x ∈ [1,2[, ⌊x⌋ = 1 donc lim
x→2−

⌊x⌋ = 1 ≠ ⌊2⌋

Donc, la fonction n’est pas continue à gauche en 2
• D’autre part,

∀x ∈ [2,3[, ⌊x⌋ = 2 donc lim
x→2+

⌊x⌋ = 2 = ⌊2⌋

Donc, la fonction est continue à droite en 2.

Finalement, la fonction partie entière n’est pas continue
en 2, elle est seulement continue à droite en 2. De manière
générale, la fonction partie entière n’est pas continue au
niveau des valeurs entières.
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Exemple 1.3 On considère la fonction f ∶ R→ R définie par

∀x ∈ R, f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2x+1 si x ⩾ 0

(x+1)2 si x < 0

La fonction f est-elle continue en 0?

◦
0 +∞−∞

f (x) = (x−1)2 f (x) = 2x+1

• D’une part, f (0) = 1.
• D’autre part,

∀x > 0, f (x) = 2x+1

Donc
lim

x→0−
f (x) = 1.

Donc f est continue à droite en 0.
• D’autre part,

∀x < 0, f (x) = (x+1)2

Donc
lim

x→0+
f (x) = 1

Donc f est continue à gauche en 0.
Donc finalement, f est continue en 0.

0
•

1

1

Exemple 1.4 Soit k ∈ R. On considère la fonction f ∶ R→ R définie par

∀x ∈ R, f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x2 −3x+5 si x < 0

k si x ⩾ 0

Pour quelle·s valeur·s de k, la fonction f est-elle continue en 0?

• D’une part, f (0) = k.
• D’autre part,

∀x > 0, f (x) = k donc lim
x→0−

f (x) = k.

• D’autre part,

∀x < 0, f (x) = x2
−3x+5 donc lim

x→0+
f (x) = 5.

Or la fonction f est continue en 0 si et seulement si

lim
x→0−

f (x) = lim
x→0+

f (x) = f (0),

c’est-à-dire si et seulement si k = 5.

2/14



1.2 Continuité sur un intervalle
Définition 1.5 Soit f ∶ I → R une application. On dit que f est continue sur I si f est continue en tout
point de I. On note C(I) ou encore C0(I) l’ensemble des applications continues de I dans R.

En pratique, on étudie la continuité «à la main» qu’aux points qui posent problème (par exemple, les
points de raccordements d’une fonction définie par morceaux). Le reste est géré grâce à la continuité des
fonctions usuelles et par opérations sur les fonctions continues.

Proposition 1.6
• Les fonctions polynomiales, valeur absolue, racine carrée, logarithme, exponentielle sont continues

sur leur ensemble de définition. La fonction inverse est continue sur ]−∞,0[ et sur ]0,+∞[.
• Pour tout n ∈ Z, la fonction partie entière est continue sur [n,n+1[ et discontinue en n (elle y est

continue à droite mais pas à gauche).

Proposition 1.7
1. Soient f et g deux fonctions définies sur I à valeurs réelles et (λ ,µ) ∈ R2.

(a) Si f et g sont continues sur I, alors λ f +µg est continue sur I.
(b) Si f et g sont continues sur I, alors f g est continue sur I.
(c) Si f ne s’annule pas sur I et si f est continue sur I, 1/ f est continue sur I.
(d) Si g ne s’annule pas sur I et si f et g sont continues sur I, f/g est continue sur I.

2. Soient f ∶ I ⟶ R, g ∶ J ⟶ R, tels que :
(a) ∀x ∈ I, f (x) ∈ J ;
(b) f est continue sur I ;
(c) g est continue sur J.

Alors g◦ f est continue sur I.

! C’est grâce à la propriété de continuité que l’on peut affirmer que

lim
x→a

ex
= ea (a ∈ R) lim

x→a

√
x =

√
a (a ⩾ 0) lim

x→a
ln(x) = ln(a) (a > 0)

Exemple 1.8 On considère la fonction f ∶ R→ R définie par

∀x ∈ R, f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 si x ⩽ 0

1− ex si x > 0

Montrer que la fonction f est continue sur R.

• La fonction f est continue sur ]−∞,0[ car la fonction x ↦ 0 est continue sur R donc à
fortiori sur ]−∞,0[.

• La fonction f est continue sur ]0,+∞[ par soustraction, car les fonctions x ↦ 1 (fonction
constante/polynomiale) et x ↦ exp(x) (fonction usuelle/exponentielle) sont continues sur
R et donc à fortiori sur ]0,+∞[.

• Enfin, la fonction f est continue en 0 car

lim
x→0−

f (x) = lim
x→0+

f (x) = f (0) = 0.

Donc finalement, f est continue sur R.
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Exemple 1.9 On considère la fonction f ∶]0,+∞[→ R définie par

∀x ∈]0,+∞[, f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln(x) si 0 < x < 1

2 si x = 1

x−1 si x > 1

Étudier la continuité de f sur ]0,+∞[.

• La fonction f est continue sur ]0,1[ car la fonction logarithme est continue sur ]0,+∞[
et donc à fortiori sur ]0,1[.

• La fonction f est continue sur ]1,+∞[ car la fonction x ↦ x− 1 est continue sur R
(fonction polynomiale) et donc à fortiori sur ]1,+∞[.

• Cependant, la fonction n’est pas continue en 1 car

lim
x→1−

f (x) = 0 ≠ f (1).

Donc finalement, la fonction est continue sur ]0,1[ et sur ]1,+∞[ mais pas sur ]0,+∞[

Exemple 1.10 On considère la fonction f définie par

∀x ∈D f , f (x) = 1
x+1 .

Étudier la continuité de f sur son domaine de définition.

Tout d’abord, la fonction f est définie sur

D f = R\{−1} =]−∞,−1[∪]−1,+∞[.

• Puis, d’une part, la fonction x ↦ x+1 est continue sur R (fonction polynomiale). Donc,
à fortiori, elle est continue sur ]−1,+∞[ et ne s’annule pas sur cet intervalle, donc, par
passage à l’inverse la fonction f est continue sur ]−1,+∞[.

• De même, la fonction f est continue sur ]−∞,−1[.

Exemple 1.11 On considère la fonction f définie par

∀x ∈D f , f (x) = ln(1+ x2).

Étudier la continuité de f sur son domaine de définition.

Tout d’abord, la fonction f est définie sur R car

∀x ∈ R, 1+ x2
∈]0,+∞[.

Puis, la fonction f est continue sur R car

• la fonction x ↦ 1+ x2 est continue sur R et prend des valeurs strictement positives
• et la fonction x ↦ ln(x) est continue sur ]0,+∞[.
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1.3 Lien entre continuité et convergence d’une suite

Proposition 1.12 Soit f ∶ I → R une fonction. Soit (un)n∈N une suite d’éléments de I. Soit ℓ ∈ I.
Si un ⟶

n→+∞
ℓ et que f est continue en ℓ, alors f (un) ⟶

n→+∞
f (ℓ).

! C’est grâce à la propriété de continuité que l’on peut affirmer que

lim
n→+∞

e
1
n = e0

= 1 lim
n→+∞

ln(n+2)− ln(n+1) = lim
n→+∞

ln(n+2
n+1) = ln(1) = 0

! Si une suite est définie de manière récursive par

∀n ∈ N, un+1 = f (un),
avec f continue et que cette suite converge vers une limite ℓ ∈ R, alors la limite vérifie nécessairement

ℓ = f (ℓ).

Exemple 1.13 Soit (un)n∈N la suite réelle définie par

u0 = −2 et pour tout n ∈ N, un+1 =
1
2un +3.

On admet que la suite (un)n∈N est croissante et majorée par 6. Conclure quant à la convergence de cette
suite.

• Étape 1 : Montrer que la suite converge. Comme la suite est croissante et majorée, par
théorème de la limite monotone, la suite (un)n∈N converge vers un certain ℓ ∈ R.

• Étape 2 : Déterminer la valeur de la limite. De plus, la suite (un)n∈N vérifie la relation de
récurrence

∀n ∈ N, un+1 = f (un) avec ∀x ∈ R, f (x) = 1
2x+3

Donc, comme la suite (un)n∈N converge vers ℓ et que la fonction f est continue sur R, en
passant à la limite dans la relation de récurrence, on obtient

ℓ =
1
2ℓ+3 ⇔ ℓ = 6

Finalement, on a montré que la suite (un)n∈N tend vers 6.

Exemple 1.14 Soit (un)n∈N la suite réelle définie par

u0 = 0 et pour tout n ∈ N, un+1 =
√

2+un.

On admet que la suite (un)n∈N est croissante et majorée par 2. Conclure quant à la convergence de cette
suite.

• Étape 1 : Montrer que la suite converge. Comme la suite est croissante et majorée, par
théorème de la limite monotone, la suite (un)n∈N converge vers un certain ℓ ∈ R.

• Étape 2 : Déterminer la valeur de la limite. De plus, la suite (un)n∈N vérifie la relation de
récurrence

∀n ∈ N, un+1 = f (un) avec ∀x ∈]−2,+∞[, f (x) =
√

2+ x

Donc comme la suite (un)n∈N converge vers ℓ, et que la fonction f est continue sur
]−2,+∞[, en passant à la limite dans la relation de récurrence, on obtient

ℓ = f (ℓ) =
√

2+ ℓ.

On en déduit que nécessairement ℓ ⩾ 0. Puis que,

ℓ =
√

2+ ℓ ⇔ ℓ
2
− ℓ−2 = 0 ⇔ ���ℓ = −1 ou ℓ = 2

Finalement, on a montré que la suite (un)n∈N tend vers 2.
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1.4 Prolongement par continuité
Définition 1.15 Soient a ∈ I et f définie sur I\{a} (donc f n’est pas définie en a). On dit que f est
prolongeable par continuité en a lorsque f admet une limite réelle en a. Dans ce cas, la fonction f̃
(parfois notée encore f ) définie sur I par

∀x ∈ I, f̃ (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f (x) si x ≠ a

lim
x→a

f (x) si x = a

est appelée prolongement par continuité de f en a.

! Ne pas confondre :
• étude de la continuité en a (la fonction est définie en a),
• étude du prolongement par continuité en a (la fonction n’est pas définie en a).

Exemple 1.16 Étudier le prolongement par continuité en 0 de la fonction f définie par

f ∶ ]0,+∞[ → R

x ↦ x ln(x)

Pour savoir si f est prolongeable par continuité en zéro, on doit étudier sa limite en zéro. Par
croissances comparées, on a

lim
x→0

f (x) = lim
x→0

x ln(x) = 0 ∈ R.

Donc, la fonction f est prolongeable par continuité en zéro et son prolongement par continuité
en 0 est donné par

∀x ∈ [0,+∞[, f̃ (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x ln(x) si x > 0

0 si x = 0

Exemple 1.17 Étudier le prolongement par continuité en 0 de la fonction f définie par

f ∶ R∗
→ R

x ↦ 1
x2

Pour savoir si f est prolongeable par continuité en zéro, on doit étudier sa limite en zéro. On a

lim
x→0

f (x) = lim
x→0

x
1
x2 = +∞.

Donc, la fonction f n’est pas prolongeable par continuité en zéro.
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Exemple 1.18 Étudier le prolongement par continuité en 1 de la fonction f définie sur R\{1} par

∀x ∈ R\{1}, f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ex si x < 1

ln(x) si x > 1

Pour savoir si f est prolongeable par continuité en 1, on doit étudier sa limite en 1. Comme
la fonction est définie par morceaux, on étudie sa limite à droite et sa limite à gauche. Par
continuité des fonctions logarithme et exponentielle, on a

lim
x→1−

f (x) = lim
x→1−

ex
= e1

= e et lim
x→1+

f (x) = lim
x→1+

ln(x) = ln(1) = 0.

Comme les limites à droite et à gauche en 1 sont différentes, la fonction f n’admet pas de limite
en 1. Donc, la fonction f n’est pas prolongeable par continuité en 1.

2 Théorèmes impliquant de la continuité
2.1 Théorème des valeurs intermédiaires (TVI)

Définition 2.1 Un intervalle est un sous-ensemble de R de la forme [a,b], ]a,b], [a,b[ ou ]a,b[ avec
a ∈ R\{−∞} et b ∈ R\{+∞}.

? Un intervalle est une partie de R “sans trou”. Par exemple, ]−∞,5] est un intervalle mais [−∞,3]∪
[4,5] n’en est pas un.

Proposition 2.2 — TVI, v1. L’image directe d’un intervalle par une application continue est un intervalle.

Proposition 2.3 — TVI, v2. Soient a < b deux nombres réels. On suppose que
➀ la fonction f est continue sur [a,b].

Alors, pour tout k ∈ [ f (a), f (b)], il existe c ∈ [a,b] tel que k = f (c).

•a •
b

• f (a)

•f (b)

•k

•c

•
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Exemple 2.4 On considère la fonction f définie par

f ∶ R → R

x ↦ x3 −3x2 +2

Montrer que l’équation f (x) = 1 admet au moins une solution dans [2,3], c’est-à-dire

∃x ∈ [2,3], 1 = f (x).

Tout d’abord, en tant que fonction polynomiale, la fonction f est continue sur R et en particulier,

➀ la fonction f est continue sur [2,3].
Donc, d’après le théorème des valeurs intermédiaires,

pour tout k ∈ [−2,2], il existe x ∈ [2,3] tel que k = f (x)

En particulier, comme 1 ∈ [−2,2], il existe x ∈ [2,3] tel que f (x) = 1.

Exemple 2.5 On considère la fonction f définie par

f ∶ R → R

x ↦ e−x −2x+1

Montrer que l’élément e admet un antécédent (compris entre −1 et 0) par la fonction f .

On cherche à montrer que l’élément e admet un antécédent par la fonction f qui est compris
entre −1 et 0, c’est-à-dire, on cherche à montrer que

∃x ∈ [−1,0], f (x) = e.

Tout d’abord, en tant que somme de fonctions continues sur R, la fonction f est continue sur R
et en particulier,

➀ la fonction f est continue sur [−1,0].
Donc, d’après le théorème des valeurs intermédiaires,

pour tout k ∈ [2,e+3], il existe x ∈ [−1,0] tel que k = f (x)

En particulier, comme e ∈ [2,e+ 3] (car 2 < e < 3), il existe x ∈ [−1,0] tel que f (x) = e.
Autrement dit, l’élément e admet un antécédent par la fonction f qui est compris entre −1 et 0.

Proposition 2.6 — TVI, v3. Soient a < b deux nombres réels.
a) On suppose que

➀ la fonction f est continue sur [a,b]
➁ et f (a) f (b) ⩽ 0.

Alors, la fonction f s’annule au moins une fois sur [a,b].
b) Autrement dit, si I est un intervalle et que f ∶ I → R est une fonction continue qui ne s’annule pas

sur I, alors f garde un signe constant sur I.
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Exemple 2.7 On considère la fonction f définie par

f ∶ R → R

x ↦ e−x −2x

Montrer que f s’annule au moins une fois sur ]0,1[.

On a :

➀ la fonction f est continue sur [0,1] (comme somme de fonctions continues sur R et donc
à fortiori sur [0,1])

➁ f (0) = 1 > 0 et f (1) = e−1 −2 < 0.

Donc, d’après théorème des valeurs intermédiaires, la fonction f s’annule au moins une fois
sur [0,1].

Exemple 2.8 Montrer que l’équation ln(x)+1 = −2x admet au moins une solution dans I = [ 1
e3 ,

1
e ].

On considère la fonction f définie par

f ∶ ]0,+∞[ → R

x ↦ ln(x)+2x+1

On cherche à montrer que la fonction f s’annule au moins une fois sur l’intervalle I.

➀ la fonction f est continue sur I car x ↦ ln(x) est continue sur ]0,+∞[ et x ↦ 1+2x est
continue sur R (et donc à fortiori, elles sont continues sur I

➁ f ( 1
e3 ) = 2

e > 0 et f ( 1
e) = −2+ 2

e3 < 0.

Donc, en appliquant le théorème des valeurs intermédiaires, la fonction f s’annule au moins
une fois sur I. Autrement dit, l’équation ln(x)+1 = −2x admet au moins une solution dans I.

Proposition 2.9 — TVI, v4. Soient a < b deux nombres réels.
a) On suppose que

➀ la fonction f est continue sur ]a,b[.
Alors, pour tout k ∈ [lim

x→a
f (x), lim

x→b
f (x)], il existe c ∈]a,b[ tel que k = f (c).

b) On suppose que
➀ la fonction f est continue sur ]a,b[
➁ et lim

x→a
f (x) lim

x→b
f (x) ⩽ 0.

Alors, la fonction f s’annule au moins une fois sur ]a,b[.

Exemple 2.10 Montrer que toute fonction polynomiale, de degré impair, et de coefficient dominant 1, admet
au moins une racine réelle.

Soit P une fonction polynomiale de degré impair. Alors, il existe n ∈ N tel que

∀x ∈ R, P(x) = x2n+1
+a2nx2n

+ . . .+a1x+a0.

Alors,

➀ la fonction P est continue sur R
➁ et lim

x→+∞
P(x) = +∞ > 0 et lim

x→−∞
P(x) = −∞ < 0.

Donc, en appliquant le théorème des valeurs intermédiaires, la fonction P s’annule au moins
une fois sur R, c’est-à-dire P admet au moins une racine réelle.
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2.2 Théorème des bornes
Définition 2.11 Un segment de R est un intervalle de la forme [a,b] avec a < b deux réels.

Proposition 2.12 — Théorème des bornes, v1. L’image directe d’un segment par une application continue est
un segment.

Proposition 2.13 — Théorème des bornes, v2. Soient a < b deux réels.
On suppose que

➀ la fonction f est définie sur le segment [a,b]
➁ la fonction f est continue sur [a,b].

Alors f est bornée et atteint ses bornes, autrement dit, elle admet un maximum et un minimum sur [a,b].

! Le théorème est faux si la fonction n’est pas continue.
Par exemple, si on considère la fonction f définie sur
[0,1] par

∀x ∈ [0,1], f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x si x ∈]0,1]

1 si x = 0

Alors f admet un maximum, donné par 1, atteint en
x = 0 et x = 1. Mais f n’admet pas de minimum.

•

c

Exemple 2.14 Soit f ∶ [0,1]→ R une fonction continue telle que

∀x ∈ [0,1], f (x) > 0.

1. Montrer qu’il existe m > 0 tel que

∀x ∈ [0,1], f (x) ⩾ m.

On va appliquer le théorème des bornes.
➀ La fonction f est définie sur le segment [0,1]
➁ la fonction f est continue sur [0,1].

Donc, d’après le théorème des bornes, la fonction f est bornée et atteint ses bornes. En
particulier, elle admet un minimum m, atteint en un certain point x0 ∈ [0,1]. D’une part,
m = f (x0) > 0 par hypothèse sur la fonction f . D’autre part, en tant que minimum,

∀x ∈ [0,1], f (x) ⩾ m.

2. Montrer que ce résultat est faux si on ne travaille pas sur un segment.

Si on considère la fonction

f ∶ ]0,+∞[ → R

x ↦ 1
x

alors,
∀x ∈]0,+∞[, f (x) > 0.

Mais, comme lim
x→+∞

f (x) = 0, il ne peut pas exister d’élément m > 0 tel que

∀x ∈]0,+∞[, f (x) ⩾ m.
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2.3 Théorème de la bijection
Définition 2.15 Soit f ∶ I → R une fonction. Soit J un intervalle de R. On dit que f réalise une bijection
de I dans J lorsque :

➀ pour tout x ∈ I, on a f (x) ∈ J,
➁ et pour tout y ∈ J, l’équation f (x) = y admet une unique solution dans I (autrement dit, tout y ∈ J

admet un unique antécédent x ∈ I par f )

Exemple 2.16 Montrer que f ∶ x ↦ 2x+ 1 réalise une bijection de R dans R et déterminer sa bijection
réciproque.

Montrons que f réalise une bijection de R dans R.

➀ Tout d’abord, pour tout x ∈ R, f (x) = 2x+1 ∈ R.
➁ Soit y ∈ R. Montrons que l’équation f (x) = y admet une unique solution dans R. Soit

x ∈ R. On a
y = f (x) ⇔ y = 2x+1 ⇔ x =

y−1
2 .

Donc f réalise une bijection de R dans R et sa bijection réciproque est donnée par

f−1 ∶ R → R

y ↦
y−1

2

Exemple 2.17 Déterminer deux intervalles I et J tels que f ∶ x ↦ x2 réalise une bijection de I dans J.

Geste invisible : Attention, f ne peut pas réaliser une bijection de R dans R car l’équation
y = f (x) n’admet pas de solution dès que y < 0. Donc, on doit prendre au moins J = [0,+∞[.
De plus, si y > 0, l’équation y = f (x) admet deux solutions +

√
y et −

√
y. Donc, il faut restreindre

l’espace de départ aussi et prendre I = [0,+∞[.
Montrons que f réalise une bijection de [0,+∞[ sur [0,+∞[.

➀ Tout d’abord, pour tout x ∈ [0,+∞[, f (x) = x2
∈ [0,+∞[.

➁ Soit y ∈ [0,+∞[. Montrons que l’équation f (x) = y admet une unique solution dans
[0,+∞[. Soit x ∈ [0,+∞[. On a

y = f (x) ⇔ y = x2
⇔car y>0 x =

√
y ou ����x = −

√
ycar x⩾0

Donc f réalise une bijection de [0,+∞[ dans [0,+∞[ et sa bijection réciproque est donnée par

f−1 ∶ [0,+∞[ → [0,+∞[

y ↦
√

y

Proposition 2.18 Soit f réalisant une bijection de I dans J, de bijection réciproque g. Alors,
1. Pour tout x ∈ I, g( f (x)) = x et pour tout y ∈ J, f (g(y)) = y.
2. Pour tout x ∈ I et y ∈ J,

y = f (x) ⇔ x = g(y).
3. Pour tout a borne de I et tout b borne de J,

lim
x→a

f (x) = b ⇔ lim
y→b

g(y) = a.
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Proposition 2.19 — Théorème de la bijection, v1. Soit f ∶ I → R une fonction.
On suppose que

➀ f est définie sur un intervalle I,
➁ f est continue sur I,
➂ f est strictement monotone sur I.

Notons alors J l’intervalle suivant (plusieurs cas) :

f croissante f décroissante

I = [a,b] J = [ f (a), f (b)] J = [ f (b), f (a)]

I =]a,b] J = ] lim
x→a+

f (x), f (b)] [ f (b), lim
x→a+

f (x)[

I = [a,b[ J = [ f (a), lim
x→b−

f (x)[ ] lim
x→b−

f (x), f (a)]

I =]a,b[ J = ] lim
x→a+

f (x), lim
x→b−

f (x)[ ] lim
x→b−

f (x), lim
x→a+

f (x)[

Alors,
• f réalise une bijection de I sur l’intervalle J = f (I).
• sa fonction réciproque f−1 ∶ J ⟶ I est continue et strictement monotone sur J, de même sens de

variation que f .

Proposition 2.20 — Théorème de la bijection, v2. Soit f ∶ I → R une fonction.
On suppose que

➀ f est définie sur un intervalle I,
➁ f est continue sur I,
➂ f est strictement monotone sur I.

Alors, pour tout y ∈ J, il existe un unique x ∈ I tel que y = f (x).

? On peut utiliser le théorème de la bijection pour
• Démontrer qu’une fonction définie sur un intervalle est bijective (utiliser la v1).
• Démontrer qu’une équation admet une unique solution (utiliser la v2).

Exemple 2.21 Soit f la fonction définie par f (x) = x3 + x+ 1. Démontrer que f réalise une bijection de
l’intervalle [−1,0] sur un intervalle J à déterminer.

➀ La fonction f est définie sur l’intervalle [−1,0].
➁ La fonction f est continue sur [−1,0].
➂ Montrons que la fonction f est strictement croissante sur [−1,0].

(P) La fonction est dérivable sur [−1,0] et

∀x ∈ R, f ′(x) = 3x2
+1 ⩾ 0.

(E) L’équation f ′(x) = 0 admet aucune solution sur [−1,0].
Donc, d’après le théorème de la bijection, la fonction f réalise une bijection de [−1,0] sur
[−1,1].
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Exemple 2.22 Montrer que l’équation ln(x) = x−3 admet une unique solution dans [1,+∞[.

On cherche à montrer
∃x ∈ [1,+∞[, ln(x)− x+3 = 0.

Pour cela, on considère la fonction

f ∶ [1,+∞[ → R

x ↦ ln(x)− x+3

➀ La fonction f est définie sur l’intervalle [1,+∞[.
➁ La fonction f est continue sur [1,+∞[.
➂ Montrons que la fonction f est strictement décroissante sur [1,+∞[.

(P) La fonction est dérivable sur [1,+∞[ et

∀x ∈ R, f ′(x) = 1
x −1 =

1− x
x ⩽ 0

(E) L’équation f ′(x) = 0 admet une unique solution, donnée par x = 1.

Donc, d’après le théorème de la bijection, la fonction f réalise une bijection de [1,+∞[ sur
]−∞,2]. Autrement dit,

∀y ∈]−∞,2], ∃!x ∈ [1,+∞[, f (x) = y.

En particulier, il existe un unique x ∈ [1,+∞[ tel que f (x) = 0, c’est-à-dire ln(x) = x−3.

Exemple 2.23 (❤) On considère la fonction

f ∶ R → R

x ↦ xex

1. Montrer que, pour tout n ∈ N∗, l’équation f (x) = 1
n admet une unique solution dans [−1,+∞[, que

l’on notera un.

➀ La fonction f est définie sur l’intervalle [−1,+∞[.
➁ La fonction f est continue sur [−1,+∞[.
➂ Montrons que la fonction f est strictement croissante sur [−1,+∞[.

(P) La fonction est dérivable sur [−1,+∞[ et

∀x ∈ R, f ′(x) = (x+1)ex
⩾ 0.

(E) L’équation f ′(x) = 0 admet une unique solution, donnée par x = −1.
Donc, d’après le théorème de la bijection, la fonction f réalise une bijection de [−1,+∞[
sur [− 1

e ,+∞[. Autrement dit,

∀y ∈ [−1
e ,+∞[, ∃!x ∈ [−1,+∞[, f (x) = y.

En particulier, pour tout n ∈ N∗, il existe un unique un ∈ [−1,+∞[ tel que f (un) = 1
n .

2. Montrer que la suite (un)n∈N∗ converge.

Pour cela, on va appliquer le théorème de la limite monotone.
• La suite (un)n∈N∗ est minorée par −1.
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• La suite (un)n∈N∗ est décroissante car, pour tout n ∈ N∗,

f (un+1) =
1

n+1 ⩽ f (un) =
1
n

donc, comme f−1 est strictement croissante sur [−1,+∞[ (car f l’est),

f−1( f (un+1)) ⩽ f−1( f (un))

c’est-à-dire
un+1 ⩽ un.

Donc, d’après le théorème de la limite monotone, la suite (un)n∈N∗ converge vers un
certain ℓ ∈ R.

3. Déterminer la limite de la suite (un)n∈N∗ .

La suite (un)n∈N vérifie la relation

∀n ∈ N∗
, f (un) =

1
n .

Donc en passant à la limite dans cette relation, comme la fonction f est continue, on obtient
que

f (ℓ) = 0.

Or
f (ℓ) = 0 ⇔ ℓeℓ = 0 ⇔ ℓ = 0.

Donc la suite (un)n∈N∗ converge vers 0.
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