TD 01 – POLYNÔMES

Exercice 1 – Opérations sur les polynômes. Soient P et Q deux polynômes définis par, pour tout $x \in \mathbb{R}$,

$$P(x) = 3x^3 + 4x^2 + 5$$
 et $Q(x) = x^2 - 7x + 1$

- 1. Pour les deux polynômes *P* et *O*, donner :
 - leur coefficient constant,
 - · leur degré,
 - leur coefficient dominant,
 - un entier *n* tels qu'ils appartiennent à $\mathbb{R}_n[x]$.
- 2. Sans faire de calculs, donner une information sur le degré des polynômes suivants :

i)
$$-2P$$

ii)
$$P + O$$

3. Calculer les trois polynômes de la Question 2, et vérifier que la réponses à la Question 2 coïncide avec ces résultats.

Exercice 2 – Unicité des coefficients d'un polynôme. Les questions de cet exercice sont indépendantes.

1. Déterminer $(a,b,c) \in \mathbb{R}^3$ tels que

pour tout
$$x \in \mathbb{R}$$
, $a(x+2)^2 + b(x+3)^2 = cx + 10$.

2. Déterminer $(a, b, c) \in \mathbb{R}^3$ tels que

pour tout
$$x \in \mathbb{R} \setminus \{0, 1, -1\}$$
, $\frac{2}{x(x-1)(x+1)} = \frac{a}{x-1} + \frac{b}{x} + \frac{c}{x+1}$.

Exercice 3 – Racine s d'un polynôme de degré un ou deux. Déterminer la/les racine(s) des polynômes suivants.

1.
$$P_1: x \mapsto 7x + 3$$

2.
$$P_2: x \mapsto \frac{1}{2}x + 6$$

3.
$$P_3: x \mapsto -5x^2 - 11x - 2$$

4.
$$P_4: x \mapsto 2x^2 - 4\sqrt{5}x + 11$$

5.
$$P_5: x \mapsto -4x^2 + 12x - 9$$

4.
$$P_4: x \mapsto 2x^2 - 4\sqrt{5}x + 11$$

6. $P_6: x \mapsto x^2 + mx + 1 \text{ (avec } m \in \mathbb{R}\text{)}$

Exercice 4 - Équations avec des fractions. Résoudre les équations suivantes.

1.
$$\frac{x-1}{x+1} = \frac{2x-5}{x-1}$$

2.
$$\frac{4}{x-4} = \frac{40}{x^2-16} - 1$$

Exercice 5 – Polynôme défini par certaines valeurs. Déterminer un polynôme de degré 2 tel que P(-1) = 1, P(0) = -1 et P(1) = -1. Ce polynôme est-il unique?

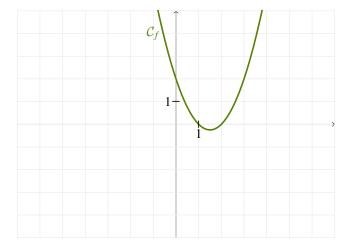
Exercice 6 – Résolution graphique. Soit C_f la courbe représentative ci-dessous d'une fonction polynomiale du second degré. Résoudre graphiquement

1. l'équation
$$f(x) = 0$$

2. l'inéquation
$$f(x) > 0$$

3. l'inéquation
$$f(x) \ge 2$$

Puis déterminer l'expression explicite de la fonction f et vérifier les résultats précédents.



Mathématiques - ECG1 TD 01 - Polynômes

Exercice 7 – Relations coefficients-racines. Les trois questions sont indépendantes.

1. Résoudre le système suivant d'inconnues $(r,s) \in \mathbb{R}^2$

$$\begin{cases} r + s = -2 \\ r \times s = -15 \end{cases}$$

(Indication : On montrera que s et r sont les racines d'un polynômes à déterminer.)

2. (*) Déterminer l'âge de Marc et Sophie sachant que Marc est le plus âgé, que la somme de leurs âges est égale à 28 et que le produit de leurs âges est égal à 192. (Indication : 28² = 784. On montrera que les âges de Marc et Sophie sont les racines d'un polynômes à déterminer.)

Exercice 8 – Factorisation/Racines d'un polynôme. Soit P le polynôme défini par, pour tout $x \in \mathbb{R}$,

$$P(x) = 3x^3 - x - 2$$

- 0. Donner le nombre maximal de racines distinctes possible pour le polynôme P.
- 1. Vérifier que 1 est une racine évidente du polynôme P.
- 2. Trouver un polynôme Q tel que,

pour tout
$$x \in \mathbb{R}$$
, $P(x) = (x-1)Q(x)$.

- 3. En déduire toutes les racines de P.
- 4. (\star) Résoudre sur $\mathbb R$ l'inéquation $P(x) \ge 0$. (On s'aidera de la forme factorisée pour dresser le tableau de signe de P.)

Exercice 9 – Factorisation/Racines d'un polynôme. Soit P le polynôme défini par, pour tout $x \in \mathbb{R}$,

$$P(x) = x^3 - 2x^2 - 5x + 6$$

- 0. Donner le nombre maximal de racines distinctes possible pour le polynôme P.
- 1. Vérifier que -2 est une racine évidente du polynôme P.
- 2. Trouver un polynôme Q tel que,

pour tout
$$x \in \mathbb{R}$$
, $P(x) = (x+2)Q(x)$.

- 3. Factoriser complètement le polynôme *P*.
- 4. En déduire toutes les racines de *P*.
- 5. (\star) Résoudre les équations suivantes. (On pourra considérer des nouvelles variables $X = \ln(x)$ ou

(a)
$$(\ln(x))^3 - 2(\ln(x))^2 - 5\ln(x) + 6 = 0$$

(b) $e^{2x} - 2e^x + 6e^{-x} - 5 = 0$

(b)
$$e^{2x} - 2e^x + 6e^{-x} - 5 = 0$$

Exercice 10 – ECRICOME 2015, Maths S. Factoriser le polynôme $P: x \mapsto 2x^3 - 3x^2 + 1$.

Exercice 11 – Division euclidienne. Effectuer la division euclidienne de A par B dans les deux cas suivants.

- 1. Pour tout $x \in \mathbb{R}$, $A(x) = x^3 + 1$ et $B(x) = x^2 + x + 1$.
- 2. Pour tout $x \in \mathbb{R}$, $A(x) = 2x^5 + x^3 + 17x 2$ et $B(x) = x^2 + 2x + 3$.

Exercice 12 – ECRICOME 2010, Maths S. Soit (α, β, γ) solution du système

(S)
$$\begin{cases} 2\alpha(\alpha - \gamma)(\alpha - \beta) &= 2\alpha - \beta - \gamma \\ 2\beta(\beta - \alpha)(\beta - \gamma) &= 2\beta - \alpha - \gamma \\ 2\gamma(\gamma - \alpha)(\gamma - \beta) &= 2\gamma - \alpha - \beta \end{cases}$$

On introduit le polynôme Q, défini par,

pour tout
$$x \in \mathbb{R}$$
, $Q(x) = (x - \alpha)(x - \beta)(x - \gamma)$

Montrer que (α, β, γ) est solution de (S) si et seulement si le polynôme $x \mapsto Q''(x) - 4xQ'(x)$ admet pour racines α, β, γ .