I. Aide à la préparation du DS0

1	Résoudre une équation du premier degré	1
2	Résolution d'une équation du second degré 2	
3	Les identités remarquables	3
4	Les fractions	3
4.1	La notion d'inverse et de fraction	3
4.2	Règles de calcul pour les fractions	5

1 Résoudre une équation du premier degré

Proposition 1.1 — Résolution d'une équation de premier degré. Soient a, b des réels tels que a soit non nul. L'équation du premier degré

$$ax + b = 0$$

admet une unique solution, donnée par

$$x = -\frac{b}{a}.$$

• Au lieu d'apprendre par coeur cette formule, on pourra plutôt la retrouver à chaque fois via des manipulations sur l'équation :

$$ax + b = 0 \quad \Leftrightarrow \quad ax + b - b = -b$$

$$\Leftrightarrow \quad ax = -b$$

$$\Leftrightarrow \quad \frac{1}{a} \times ax = -\frac{1}{a} \times b$$

$$\Leftrightarrow \quad x = -\frac{b}{a}$$

Pensez aussi à toujours vérifier que la solution que vous indiquez... est bien une solution au cas où des erreurs de calcul auraient été faites...

Exercice 1.2 Résoudre les équations du premier degré suivantes. Soit x un réel. On a

$$x-5=3 \qquad \Leftrightarrow \qquad x=8$$

$$4x=9 \qquad \Leftrightarrow \qquad x=\frac{9}{4}$$

$$\frac{x}{2} + \frac{1}{4} = 0 \qquad \Leftrightarrow \qquad x=-\frac{1}{2}$$

$$\frac{x}{5} = 7 \qquad \Leftrightarrow \qquad x=35$$

2 Résolution d'une équation du second degré

Proposition 2.1 — Résolution de $x^2 = a$. Soit a un nombre réel.

- Si a < 0, alors l'équation $x^2 = a$ n'admet pas de solution réelle.
- Si a = 0, alors l'équation $x^2 = 0$ admet une unique solution donnée par x = 0.
- Si a > 0, alors l'équation $x^2 = a$ admet deux solutions données par $x_1 = \sqrt{a}$ et $x_2 = -\sqrt{a}$.

Exercice 2.2 Résoudre les équations du second degré suivantes.

- 1. L'équation $x^2 = -1$ n'a pas de solution.
- 2. Soit x un réel. On a $x^2 = 0 \Leftrightarrow x = 0$.
- 3. Soit x un réel. On a $x^2 = 9 \Leftrightarrow x = 3$ ou x = -3.
- 4. Soit x un réel. On a $x^2 = 2 \Leftrightarrow x = \sqrt{2}$ ou $x = -\sqrt{2}$.

Proposition 2.3 — Résolution de $ax^2 + bx + c = 0$. Soient a, b, c trois réels tels que $a \ne 0$. On appelle *discriminant* de l'équation $ax^2 + bx + c = 0$ le réel

$$\Delta = b^2 - 4ac$$

• Si $\Delta > 0$, alors l'équation $ax^2 + bx + c = a$ admet deux solutions réelles

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

• Si $\Delta = 0$ alors l'équation $ax^2 + bx + c = a$ admet une unique solution donnée par

$$x_0 = -\frac{b}{2a}$$
.

• Si $\Delta < 0$ alors l'équation $ax^2 + bx + c = a$ n'admet pas de solution réelle.

Exercice 2.4

1. Résolvons $3x^2 - x + 2 = 0$.

On calcule le discriminant :

$$\Delta = (-1)^2 - 4 \times 3 \times 2 = -23.$$

Comme $\Delta < 0$, l'équation n'admet pas de solutions.

2. Résolvons $-5x^2 - 9x - 2 = 0$.

On calcule le discriminant :

$$\Delta = (-9)^2 - 4 \times (-5) \times (-2) = 41$$

Comme $\Delta > 0$, l'équation admet deux solutions réelles, données par

$$x_1 = \frac{-(-9) - \sqrt{41}}{2 \times (-5)} = \frac{-9 + \sqrt{41}}{10}$$
 et $x_2 = \frac{-(-9) + \sqrt{41}}{2 \times (-5)} = -\frac{9 + \sqrt{41}}{10}$.

3. Résolvons $\frac{x^2}{3} - 2x + 3 = 0$.

On calcule le discriminant :

$$\Delta = (-2)^2 - 4 \times \frac{1}{3} \times 3 = 0.$$

Comme $\Delta = 0$, l'équation admet une unique solution, donnée par

$$x_0 = \frac{-(-2)}{2 \times \frac{1}{2}} = 3.$$

Les identités remarquables

Proposition 3.1 Soient *a*, *b* deux réels. On a les *identités remarquables* suivantes :

$$(a+b)^2 = a^2 + 2ab + b^2, (I.1)$$

$$(a-b)^2 = a^2 - 2ab + b^2, (I.2)$$

$$(a-b)(a+b) = a^2 - b^2.$$
 (I.3)

Le membre de gauche de chaque égalité correspond à la forme factorisée : si on voulait faire le calcul effectif avec deux nombres donnés, la dernière opération que l'on ferait est une *multiplication*, par exemple,

$$(1+3)^2 = 4^2 = 4 \times 4 = 16.$$

De même, le membre de droite correspond à la forme développée : si on voulait faire le calcul effectif avec deux nombres donnés, la dernière opération que l'on ferait est une addition, par exemple,

$$1^2 + 2 \times 1 \times 3 + 3^2 = 1 + 6 + 9 = 16.$$

Exercice 3.2 Dans les égalités suivantes, identifier les formes *factorisées* et *développées* et indiquer l'identité remarquable utilisée.

$$x^2 + 10x + 25 = (x+5)^2$$
, identité remarquable (I.1)
 $(x-1)^2 = x^2 - 2x + 1$, identité remarquable (I.2)
 $x^2 - 49 = (x-7)(x+7)$. identité remarquable (I.3)

Exercice 3.3 Utiliser les identités remarquables pour factoriser/développer les expressions suivantes.

- $(2x+3)^2 = (2x)^2 + 2 \times 2x \times 3 + 3^2 = 4x^2 + 12x + 9$
- $u^2 6u + 9 = (u 3)^2$
- $a^2 25 = (a 5)(a + 5)$
- $(a+b)^3 = (a+b)(a+b)^2 = (a+b)(a^2+2ab+b^2) = a^3+3a^2b+3ab^2+b^3$ $1-4v^2 = (1-2v)(1+2v)$
- $x 4x^2 = x(1 4x)$

4 Les fractions

4.1 La notion d'inverse et de fraction

Définition 4.1 Lorsque b est un réel <u>non nul</u>, l'*inverse* de b est le réel x tel que $x \times b = 1$. On le note $\frac{1}{b}$. On a donc

$$\frac{1}{b} \times b = 1.$$

Exemple 4.2

Nombre	Inverse
2	$\frac{1}{2}$
-3	$-\frac{1}{3}$
1	$\frac{1}{1} = 1$
$\sqrt{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

Définition 4.3 Lorsque a est un réel et b est un réel $\underline{non nul}$, le réel $\frac{a}{b}$ désigne le produit $a \times \frac{1}{b}$. Dans la fraction $\frac{a}{b}$, le nombre a est appelé le numérateur, et b, le dénominateur.

0 est donc le seul nombre réel à ne pas avoir d'inverse : il n'existe pas de nombre réel x tel que $x \times 0 = 1$. On ne peut donc jamais avoir 0 au dénominateur d'une fraction.

Proposition 4.4 Lorsque *a* et *b* sont deux réels non nuls,

$$\frac{a}{b} \times \frac{b}{a} = 1.$$

Démonstration. Soient a et b deux réels non nuls. D'après la Définition 4.3, on a

$$\frac{a}{b} \times \frac{b}{a} = a \times \frac{1}{b} \times b \times \frac{1}{a}$$
.

De plus, dans une multiplication, on peut changer l'ordre des facteurs. Donc, on a,

$$\frac{a}{b} \times \frac{b}{a} = a \times \frac{1}{a} \times b \times \frac{1}{b}$$
.

Finalement, en utilisant la Définition 4.1, on obtient

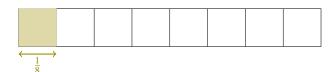
$$\frac{a}{b} \times \frac{b}{a} = 1 \times 1 = 1.$$

En mathématiques, la notion de *fraction* est donc liée à celle d'*inverse*. Dans le "langage courant", une fraction représente un *partage* : le dénominateur désigne le nombre de parts égales faites dans une unité, et le numérateur représente le nombre de parts prises dans cette unité.

Par exemple, le nombre $\frac{1}{8}$ est l'inverse du nombre 8, c'est-à-dire,

$$\frac{1}{8} \times 8 = 1.$$

Mais $\frac{1}{8}$ représente aussi une part d'un gâteau divisé en 8 parts :



Ces notions d'*inverse* et de *partage* sont liées : si on doit partager équitablement un gâteau entre plusieurs personnes, la taille des parts sera *inversement proportionnelle* au nombre de personnes.

4.2 Règles de calcul pour les fractions

Proposition 4.5 — Simplification. Soient a, b et c trois nombres réels, tels que a et c soient non nuls. On a

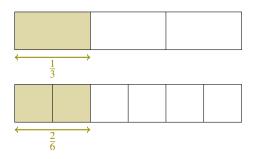
$$\frac{a \times b}{a \times c} = \frac{b}{c}.$$

Autrement dit, on ne modifie pas la valeur d'une fraction en multipliant ou en divisant le numérateur et le dénominateur par le même nombre.

Exemple 4.6 Par exemple,

$$\frac{1}{3} = \frac{1 \times \cancel{2}}{3 \times \cancel{2}} = \frac{2}{6}.$$

Cela correspond au fait que manger deux parts d'un gâteau partagé en six parts revient au même que manger une part de ce gâteau partagé en trois.



?

En pratique, comment simplifier une fraction?

- 1. On trouve un *facteur commun* au numérateur et au dénominateur de la fraction, c'est-à-dire un nombre qui divise à la fois le numérateur et le dénominateur. Si on n'a pas d'idées de facteurs en commun, on peut tester les petits nombres, 2, 3, 4,...
- 2. On obtient la fraction simplifiée en *divisant* le numérateur et le dénominateur par le facteur en commun.

Par exemple, essayons de simplifier la fraction $\frac{105}{60}$.

- Cherchons un facteur commun. Le nombre 2 divise le numérateur mais pas le dénominateur, ce n'est pas un facteur commun. Le nombre 3 divise 105 car 105 = 3×35 et il divise 60 car $60 = 3 \times 20$, c'est un facteur en commun.
- On simplifie donc par 3.

$$\frac{105}{60} = \frac{\cancel{3} \times 35}{\cancel{3} \times 20} = \frac{35}{20}.$$

- On recommence... On cherche un facteur en commun : 2, 3 et 4 ne fonctionnent pas mais 5 fonctionne.
- On simplifie par 5.

$$\frac{105}{60} = \frac{35}{20} = \frac{\cancel{5} \times 7}{\cancel{5} \times 4} = \frac{7}{4}.$$

 On ne peut plus continuer: 4 est uniquement divisible par 2 et 4, mais 7 n'est pas divisible par 2 ou 4. On s'arrête donc. **Exercice 4.7** Simplifier au maximum les fractions suivantes.

$$\frac{40}{90} = \frac{4}{9}$$

$$\frac{18}{72} = \frac{1}{4}$$

$$\frac{16}{24} = \frac{2}{3}$$

$$\frac{125}{75} = \frac{5}{2}$$

Exercice 4.8 Parmi les quotients suivants, quels sont ceux égaux à $\frac{5}{3}$?

Attention aux simplifications abusives... Par exemple, on ne peut *pas* simplifier un terme en commun dans une *addition* en haut et en bas d'une fraction :

$$\frac{a+b}{a+c} \neq \frac{b}{c}.$$

Par exemple,

$$\frac{1+2}{1+3} = \frac{3}{4} \neq \frac{2}{3}.$$

Proposition 4.9 — Addition/Soustraction. Soient a et b deux nombres réels et c un nombre réel non nul. On a

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$
 et $\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$

Pour additionner deux fractions, il est nécessaire que le dénominateur des deux fractions soit le même. Si ce n'est pas le cas, il faut d'abord mettre les fractions *au même dénominateur* avant de les *additionner*.

? En pratique, comment mettre au même dénominateur deux fractions?

Un dénominateur commun évident aux deux fractions \$\frac{a_1}{b_1}\$ et \$\frac{a_2}{b_2}\$ est \$b_1 \times b_2\$.
 Donc, pour mettre au même dénominateur les deux fractions, on peut multiplier le numérateur et dénominateur de la première fraction par \$b_2\$ et ceux de la deuxième fraction par \$b_1\$. Après, on peut additionner les fractions.

$$\frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1 \times b_2}{b_1 \times b_2} + \frac{a_2 \times b_1}{b_2 \times b_1} = \frac{a_1 \times b_2 + a_2 \times b_1}{b_1 \times b_2}.$$

Par exemple,

$$\frac{5}{12} + \frac{1}{6} = \frac{5 \times 6}{12 \times 6} + \frac{1 \times 12}{6 \times 12} = \frac{30}{72} + \frac{12}{72} = \frac{42}{72}.$$

On n'oublie pas de simplifier le résultat au maximum...

$$\frac{5}{12} + \frac{1}{6} = \frac{42}{72} = \frac{21}{36} = \frac{7}{12}$$

Cette méthode fonctionne à chaque fois mais elle n'est pas très optimale, car on obtient souvent des très gros dénominateurs.

• La deuxième méthode consiste à trouver "à la main" un dénominateur commun. Par exemple,

$$\frac{5}{12} + \frac{1}{6} = \frac{5}{12} + \frac{1 \times 2}{6 \times 2} = \frac{5}{12} + \frac{2}{12} = \frac{7}{12}.$$

On voit que la deuxième méthode est bien plus efficace!

Exercice 4.10 Calculer les additions/soustractions de fractions suivantes.

$$\frac{3}{4} + \frac{5}{6} = \frac{3 \times 3}{4 \times 3} + \frac{5 \times 2}{6 \times 2} = \frac{9}{12} + \frac{10}{12} = \frac{19}{12}$$

$$\frac{1}{3} - \frac{1}{2} = \frac{1 \times 2}{3 \times 2} - \frac{1 \times 3}{2 \times 3} = \frac{2}{6} - \frac{3}{6} = -\frac{1}{6}$$

$$1 + \frac{2}{3} = \frac{3}{3} + \frac{2}{3} = \frac{5}{3}$$

Exercice 4.11 Soit x > 0. Écrire la fraction suivante comme une somme de fractions :

$$\frac{x^3 + x^2 \ln(x) + 1}{x} = \frac{x^3}{x} + \frac{x^2 \ln(x)}{x} + \frac{1}{x} = x^2 + x \ln(x) + \frac{1}{x}.$$

On n'a pas de règle si l'addition est au dénominateur.

$$\frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}.$$

Par exemple,

$$\frac{1}{1+2} = \frac{1}{3} \neq \frac{1}{1} + \frac{1}{2} = \frac{3}{2}$$

Proposition 4.12 — Multiplication. Soient a,b deux nombres réels et c,d deux nombres réels non nuls. On a

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}.$$

Exercice 4.13 Calculer les multiplications de fractions suivantes.

$$\frac{3}{4} \times \frac{5}{6}$$
 = $\frac{3 \times 5}{4 \times 6}$ = $\frac{15}{24}$ = $\frac{5}{8}$

$$\frac{1}{3} \times \left(-\frac{1}{2}\right) = \frac{1 \times -1}{3 \times 2} = -\frac{1}{6}$$

Proposition 4.14 — Fraction de deux fractions. Soit a un nombre réel et b, c, d trois nombres réels non nuls. On a

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c}.$$

Pensez à bien aligner correctement les traits de fractions quand il y en a plusieurs, cela peut changer le résultat.... Par exemple :

$$\frac{2}{\frac{3}{5}} = \frac{10}{3}$$
 alors que $\frac{\frac{2}{3}}{5} = \frac{2}{15}$

Exercice 4.15 Calculer la fraction suivante :

$$\frac{\frac{3}{4}}{\frac{5}{6}} = \frac{3}{4} \times \frac{6}{5} = \frac{3 \times 6}{4 \times 5} = \frac{18}{20} = \frac{9}{10}$$

Exercice 4.16 Soit *x* un réel <u>non nul</u>. Écrire la fraction suivante comme une somme de fractions :

$$\frac{\frac{1}{3}\left(x+\frac{6}{x}\right)}{x} = \frac{1}{3}\left(x+\frac{6}{x}\right)\frac{1}{x} = \frac{1}{3}\left(1+\frac{6}{x^2}\right) = \frac{1}{3}+\frac{1}{3}\times\frac{6}{x^2} = \frac{1}{3}+\frac{2}{x^2}$$

TD 00 - CALCUL

Questions de cours

Exercice 1 – Vrai/Faux autour du cours. Indiquer si les affirmations qui suivent sont vraies ou fausses. Lorsqu'elles sont fausses, on exhibera un contre-exemple.

1. L'identité remarquable suivante est vraie : $(a+b)^2 = a^2 - 2ab + b^2$.

Contre-exemple: $(1+1)^2 = 4$ alors que $1^2 - 2x 1x 1 + 1^2 = 0$ La vioir identité remarquable est la rivante: $(a+b)^2 = a^2 + 2ab + b^2$

2. L'égalité suivante est vraie : $\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$.

Contre-enemple: $\frac{1}{4} + \frac{2}{3} = \frac{5}{3}$ alors que $\frac{4+2}{4+3} = \frac{3}{4}$ Four additionner deux fractions, les dénominateurs doinent être les mêmes: $\frac{4}{b} + \frac{2}{b} = \frac{a+c}{b}$

3. L'égalité suivante est vraie : $a^n + a^m = a^{n+m}$.

Contre-exemple: $2^1+2^2=5$ alors que $2^{1+2}=2^3=8$ La viaie règle est la suivante: $a^m \times a^m = a^{n+m}$ ▼ Faux

M Faux

4. L'égalité suivante est vraie : $\sqrt{(-3)^2} = 3$.

Vrai Vrai

□ Faux

Pour tout x dams R, $\sqrt{x^2} = |x|$

Exercices

Exercice 2 - Calcul littéral - Développer. Développer et réduire les expressions suivantes.

 $A = (3x+5)(1-x); B = (2-3x)^2; C = (2x+3x^2)^2;$ $D = (1-2x)(1+2x) - 3x(5-x); E = 2-4x-3\left((1-x)^2-(5-x)\right).$

- $A = (3x+5)(1-x) = 3x-3x \times x+5-5x = -3x^2-2x+5$
- B = $(2-3x)^2$ = $2^2-2\times2\times3x+(3x)^2=4-12x+9x^2$
- $C = (2x + 3x^2)^2 = (2x)^2 + 2x2xx3x^2 + (3x^2)^2 = 4x^2 + 42x^3 + 3x^4$
- D = $(1-2x)(1+2x) 3x(5-x) = 1^2 (2x)^2 3xx5 + 3xxx = 1 4x^2 15x + 3x^2 = -x^2 15x + 1$
- $E = \lambda 4x 3((4-x)^2 (5-x)) = 2 4x 3(4 2x + x^2 5 + x)$ = $2 - 4x - 3(-4 - x + x^2)$ = $2 - 4x + 42 + 3x - 3x^2$ = $14 - x - 3x^2$

Exercice 3 - Calcul littéral - Factoriser.

$$A = 6x^2 - x;$$
 $B = 4x^2 + 4x + 1;$ $C = x^2 - 6x + 9;$ $D = 9x^2 - 1;$ $E = (1+x)^2 - 4;$ $F = x^2 - 4 - (x+2)(5x+3).$

• $A = 6x^2 - x = 6 \times 2 \times 2 - x = 2(6x - 1)$

•
$$B = 4\pi^2 + 4\pi + 1 = (2\pi)^2 + 2\pi 2\pi 4 + 1^2 = (2\pi + 1)^2$$
 [en utilisant $(a+b)^2 = a^2 + 2ab + b^2$]

•
$$C = x^2 - 6x + 9 = x^2 - 2x^3 \cdot x + 3^2 = (x - 3)^2$$
 [en utilisant $(a - b)^2 = a^2 - 2ab + b^2$]

$$D = 9x^2 - 1 = (3x)^2 - 1^2 = (3x - 1)(3x + 1)$$
 [on utilisant $(a - b)(a + b) = a^2 - b^2$]

• D =
$$9x^2 - 1 = (3x)^2 - 1 = (3x - 1)(5x + 1)$$

• E = $(1+x)^2 - 4 = (1+x)^2 - 2^2 = (1+x-2)(1+x+2) = (x-1)(x+3)$

[en utilisant (a-b)(a+b) = $a^2 - b^2$]

•
$$F = x^2 - 4 - (x+2)(5x+3) = (x+2)(x-2) - (x+2)(5x+3) = (x+2)(x-2-(5x+3)) = (x+2)(x-2-5x-3) = (x+2)(-4x-5) = -(x+2)(4x+5)$$

Exercice 4 - Fractions. Calculer et simplifier les fractions suivantes.

$$A = \frac{5}{6} - \frac{1}{3}; \qquad B = \frac{\frac{3}{4}}{2}; \qquad C = \frac{3}{\frac{4}{2}}; \qquad D = \frac{3}{4} \times \frac{-16}{21}.$$

$$\bullet A = \frac{5}{6} - \frac{1}{3} = \frac{5}{6} - \frac{1 \times 2}{3 \times 2} = \frac{5}{6} - \frac{2}{6} = \frac{5 - 2}{6} = \frac{3}{6}$$
On simplifie le résultat:
$$A = \frac{3}{6} = \frac{3 \times 4}{3 \times 2}$$
Denc
$$A = \frac{1}{2}$$

$$\bullet B = \frac{3}{4} = \frac{3 \times 4}{4 \times 2} = \frac{3 \times 1}{4 \times 2} = \frac{3}{8}$$
On me peut pas simplifies (3 m'est pas un facteur de 8)
$$A = \frac{3}{6} - \frac{1}{3}; \qquad C = \frac{3}{\frac{4}{2}}; \qquad C = \frac{3}{\frac{4}{2}}; \qquad D = \frac{3}{4} \times \frac{-16}{4}.$$
On simplifie le résultat:
$$C = \frac{6}{4} = \frac{3 \times 2}{2 \times 2}.$$

$$C = \frac{4}{4} = \frac{3 \times 2}{2 \times 2}.$$

$$C = \frac{4}{4} = \frac{3 \times 2}{2 \times 2}.$$

$$C = \frac{6}{4} = \frac{3 \times 2}{2 \times 2}.$$

$$C = \frac{3}{4} \times \frac{-16}{4} = \frac{3 \times 2}{2 \times 2}.$$

$$C = \frac{3}{4} \times \frac{-16}{4} = \frac{3 \times 2}{2 \times 2}.$$

$$C = \frac{3}{4} \times \frac{-16}{4} = \frac{3 \times 2}{2 \times 2}.$$

$$C = \frac{3}{4} \times \frac{-16}{4} = \frac{3 \times 2}{2 \times 2}.$$

$$C = \frac{3}{4} \times \frac{-16}{4} = \frac{3 \times 2}{4 \times 2}.$$

$$C = \frac{3}{4} \times \frac{-16}{4} = \frac{3 \times 2}{4 \times 2}.$$

$$C = \frac{3}{4} \times \frac{-16}{4} = \frac{3 \times 2}{4 \times 2}.$$

$$C = \frac{3}{4} \times \frac{-16}{4} = \frac{3 \times 2}{4 \times 2}.$$

$$C = \frac{3}{4} \times \frac{-16}{4}.$$

$$C = \frac{3}{4} \times \frac{-16}{4} = \frac{3 \times 2}{2 \times 2}.$$

$$C = \frac{3}{4} \times \frac{-16}{4}.$$

Exercice 5 – Fractions. Soient a et b deux réels non nuls avec $a \neq b$. Simplifier les fractions suivantes

$$\frac{a}{b} + \frac{b}{a}; \qquad \frac{\frac{1}{a} + \frac{1}{b}}{\frac{1}{a} - \frac{1}{b}}; \qquad 1 + \frac{1}{1 + \frac{1}{a}} \quad (\text{pour } a \neq -1).$$
• Pour additionner les doux fractions, en commence par mettre au même dénominateur.

$$\frac{a}{b} + \frac{b}{a} = \frac{a \times a}{b \times a} + \frac{b \times b}{a \times b}$$
• On a

• On a
$$\frac{a + b}{a + b} = \frac{A \times b}{a \times b} + \frac{1 \times a}{b \times a} = \frac{b + a}{a \cdot b} \times \frac{ab}{b - a}$$
• On a

• On a.
$$\frac{1+\frac{4}{1+\frac{4}{\alpha}}}{1+\frac{4}{\alpha}} = 1 + \frac{4}{\frac{6}{6}+\frac{4}{6}} = 1 + \frac{4}{\frac{4}{6}+\frac{1}{4}} = 1 + 2 \times \frac{4}{\alpha+4} = 1 + \frac{4}{\alpha+4} = \frac{$$