DS 3 (Concours Blanc 1)

- Les candidat·e·s sont invité·e·s à **encadrer** dans la mesure du possible leurs résultats.
- Aucun document n'est autorisé. L'utilisation de toute calculatrice et de tout matériel électronique est interdite.
- Pour augmenter la **lisibilité** des calculs, dans la mesure du possible, les égalités successives seront présentées en colonne (et non pas en ligne) avec les différents symboles = bien alignés.

Exercice 1 – Adapté d'ECRICOME 2013, Maths E. On désigne par $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices carrées de taille 3 à coefficients réels et par 0_3 la matrice nulle de $\mathcal{M}_3(\mathbb{R})$. On pose

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & -9 & 6 \end{pmatrix}$$

ainsi que le polynôme R défini par :

$$\forall x \in \mathbb{R}, \qquad R(x) = x^3 - 6x^2 + 9x - 3.$$

- 1. Montrer que R' (la dérivée de R) admet deux racines réelles distinctes r_1 et r_2 avec $r_1 < r_2$ que l'on explicitera.
- 2. Dresser le tableau de variations de R en y ajoutant les valeurs de R en r_1 et r_2 et les limites de R en $+\infty$ et en $-\infty$.

On admet que le polynôme R possède trois racines réelles a,b,c avec

$$0 < a < r_1 < b < r_2 < c$$
.

On ne cherchera pas à calculer ces trois racines.

3. Soit λ un réel. On pose

$$X_{\lambda} = \begin{pmatrix} 1 \\ \lambda \\ \lambda^2 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$

Montrer que

$$AX_{\lambda} - \lambda X_{\lambda} = 0_{3,1} \quad \Leftrightarrow \quad R(\lambda) = 0$$

4. Soit $M \in \mathcal{M}_3(\mathbb{R})$ telle que $AM + MA = 0_3$. On admet qu'il existe une matrice P inversible et une matrice D diagonale telles que $A = PDP^{-1}$ avec

$$D = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$$

où a,b,c sont les racines du polynôme R.

- (a) Montrer que $DM' + M'D = 0_3$ où l'on a posé $M' = P^{-1}MP$.
- (b) On note

$$M' = \begin{pmatrix} p & q & r \\ s & t & u \\ v & w & x \end{pmatrix}$$

Déterminer les neuf coefficients de la matrice DM' + M'D.

(c) En déduire que $M' = 0_3$ puis que $M = 0_3$.

Exercice 2 – Adapté d'ECRICOME 2015, Maths E. On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par,

$$u_1 = 1$$
 et $\forall n \in \mathbb{N}^*, u_{n+1} = 1 - e^{-u_n}$

1. On définit la fonction $f : \mathbb{R} \to \mathbb{R}$ par

$$\forall x \in \mathbb{R}, \qquad f(x) = e^x - x - 1$$

- (a) Déterminer les limites en $+\infty$ et $-\infty$ de la fonction f.
- (b) Dresser le tableau de variations de la fonction f.
- (c) Tracer l'allure de la courbe de f.
- (d) En déduire que

$$\forall x \in \mathbb{R}, \quad e^x \ge x + 1$$

(e) Grâce à la question 1b, résoudre l'équation

$$e^x = x + 1$$

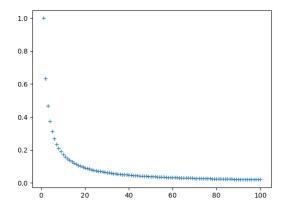
2. Démontrer par récurrence que

$$\forall n \in \mathbb{N}^*, \quad u_n > 0$$

3. Recopier et compléter le programme Python suivant afin qu'il calcule et affiche les cent premiers termes de la suite $(u_n)_{n \in \mathbb{N}^*}$ (et u_1 à u_{100}).

```
import numpy as np
u = 1
print(u)
for k in range(...., ....):
u = ......
print(u)
```

4. On a représenté ci-dessous les cent premiers termes de la suite $(u_n)_{n\in\mathbb{N}^*}$.



Quelle conjecture pouvez-vous émettre sur la monotonie et la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$?

- 5. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est décroissante. On pourra s'aider de la question 1d.
- 6. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers une limite finie que l'on notera ℓ .
- 7. Déterminer la valeur de la limite ℓ de la suite $(u_n)_{n \in \mathbb{N}^*}$.

Exercice 3 - Adapté d'ECRICOME 2020, Maths T.

Partie I

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 0$$
, $u_1 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 7u_{n+1} + 8u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ est une suite récurrente linéaire d'ordre 2. Cependant, dans ce problème, on cherche à déterminer le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ sans passer par l'équation caractéristique.

1. Recopier et compléter les lignes 5 à 9 incomplètes du script Python ci-dessous pour qu'il crée et renvoie la liste $L = [u_0, u_1, u_2, \dots, u_n]$ pour n un entier naturel entré par l'utilisateur.

2. On définit la suite $(s_n)_{n\in\mathbb{N}}$ par

$$\forall n \in \mathbb{N}, \qquad s_n = u_{n+1} + u_n$$

- (a) Que vaut s_0 ?
- (b) Montrer que la suite $(s_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison 8.
- (c) En déduire, pour tout $n \in \mathbb{N}$, l'expression de s_n en fonction de n.
- 3. On pose,

$$\forall n \in \mathbb{N}, \quad v_n = (-1)^n u_n \quad \text{et} \quad t_n = v_n - v_{n+1}$$

- (a) Exprimer, pour tout entier naturel n, t_n en fonction de s_n .
- (b) En déduire que pour tout $n \in \mathbb{N}$, on a $t_n = (-8)^n$.
- 4. Soit *n* un entier naturel non nul fixé dans toute cette question.
 - (a) Calculer la somme suivante.

$$\sum_{i=0}^{n-1} (-8)^i$$

(b) Justifier que:

$$\sum_{i=0}^{n-1} (v_i - v_{i+1}) = -v_n$$

- (c) En déduire l'expression de v_n en fonction de n.
- (d) En déduire que

$$u_n = \frac{(-1)^{n+1} + 8^n}{9}$$

(e) La formule précédente est-elle valable aussi pour n = 0?

Partie II

On considère les matrices carrées d'ordre 3 suivantes :

$$M = \begin{pmatrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \end{pmatrix} \quad \text{et} \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

On note 0_3 la matrice nulle de $\mathcal{M}_3(\mathbb{R})$.

- 5. Montrer que $M^2 7M 8I = 0_3$.
- 6. En déduire que M est inversible et exprimer M^{-1} en fonction de M et de I.
- 7. (a) On pose : $a_0 = 0$ et $b_0 = 1$. Vérifier que : $M^0 = a_0 M + b_0 I$.
 - (b) Déterminer deux réels a_1 et b_1 tels que : $M^1 = a_1M + b_1I$.
 - (c) Démontrer que pour tout $n \in \mathbb{N}^*$,

$$M^n = u_n M + 8u_{n-1} I$$

où $(u_n)_{n\in\mathbb{N}}$ est la suite définie dans la Partie I.

(d) En déduire, pour tout $n \in \mathbb{N}$, l'expression de M^n sous la forme d'une matrice.

Exercice 4 - Adapté d'EML 1993, Maths E. Soit

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \to \frac{x+1}{\sqrt{x^2+1}} - 1$$

- 1. Justifier que f est définie sur \mathbb{R} . On admet que f est également dérivable sur \mathbb{R} .
- 2. (a) Déterminer la limite de f en $+\infty$.
 - (b) Que vaut $\sqrt{x^2}$ si x < 0?
 - (c) En déduire que $\lim_{x \to -\infty} f(x) = -2$.
- 3. Démontrer que

$$\forall x \in \mathbb{R}, \qquad f'(x) = \frac{1-x}{\sqrt{x^2+1} \times (x^2+1)}$$

- 4. Former le tableau de variations de f.
- 5. (a) Montrer que

$$\forall x \in \mathbb{R}, \qquad f(x) - x = \frac{(x+1)(1-\sqrt{x^2+1})}{\sqrt{x^2+1}}$$

- (b) Résoudre l'équation f(x) = x, d'inconnue $x \in \mathbb{R}$.
- (c) Démontrer que,

$$\forall x \in \mathbb{R}, \qquad \sqrt{x^2 + 1} \ge 1$$

- (d) En déduire le tableau de signe de la fonction $x \mapsto f(x) x$.
- (e) En déduire la position relative de la courbe de f et de la droite Δ d'équation y = x.