TD 16 - CONTINUITÉ D'UNE FONCTION

Étude de la continuité

Exercice 1 – [S'inspirer des Exemples 1.8 et 1.9]

Étudier la continuité des fonctions suivantes:

1.
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} e^{-\frac{1}{x^2}} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$$

$$\mathbb{R} \longrightarrow \mathbb{R} \qquad 2. h: \mathbb{R} \longrightarrow \mathbb{R}
x \longmapsto \begin{cases} e^{-\frac{1}{x^2}} & \sin x \neq 0 \\ 1 & \sin x = 0 \end{cases} \qquad x \longmapsto \begin{cases} \sqrt{-3x+2} & \sin x < \frac{2}{3} \\ 3x-2 & \sin x \geqslant \frac{2}{3} \end{cases}$$

3.
$$g: [1, +\infty[\longrightarrow \mathbb{R}]$$

$$x \longmapsto \begin{cases} 3 & \text{si } x = 1 \\ \ln(x-1) & \text{si } 1 < x < 2 \\ (x-2)^2 & \text{si } x \geqslant 2 \end{cases}$$

4.
$$i: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} \frac{|x+2|}{x+2} & \text{si } x \neq -2 \\ 1 & \text{si } x = -2 \end{cases}$$

Exercice 2 - Prolongement par continuité. [S'inspirer des Exemples 1.16, 1.17 et 1.18]

On considère la fonction

$$f(x) = \sqrt{x} \ln(x)$$

- a) Déterminer le domaine de définition \mathcal{D}_f de la fonction f.
- b) Justifier que f est continue sur \mathcal{D}_f .
- c) Déterminer la limite de f en 0.
- d) Peut-on prolonger la fonction f par continuité en 0 ?

Exercice 3 – Lien entre continuité et convergence d'une suite. [S'inspirer des Exemples 1.13 et 1.14] Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1/2$ et

$$\forall n \in \mathbb{N}, \qquad u_{n+1} = \frac{u_n}{2} + \frac{u_n^2}{4}$$

- 1. Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $0 < u_n \le 1$.
- 2. Montrer que,

$$\forall n \in \mathbb{N}, \qquad u_{n+1} - u_n = \frac{u_n}{4} \times (u_n - 2)$$

- 3. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- 4. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est converge vers une limite finie que l'on notera ℓ .
- 5. Déterminer la valeur de ℓ la limite de la suite $(u_n)_{n\in\mathbb{N}}$.

Utilisation des théorèmes généraux

Exercice 4 - Théorème des valeurs intermédiaires. [S'inspirer de l'Exemple 2.5]

On considère la fonction

$$f : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto e^{3x} + x$$

Montrer que l'élément $1 + e^2$ admet un antécédent par la fonction f et que cet antécédent est compris entre 0 et 1.

Exercice 5 – Théorème des valeurs intermédiaires. [S'inspirer de l'Exemple 2.7]

On considère la fonction

$$f : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto e^{-x} - x^2$$

Montrer que la fonction f s'annule au moins une fois sur \mathbb{R} .

Exercice 6 - Théorème de la bijection. [S'inspirer de l'Exemple 2.21]

On considère la fonction

$$f : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto e^{-x} + x$$

- 1. Dresser le tableau de variation de f.
- 2. Montrer que la fonction f réalise une bijection de $]-\infty,0]$ dans un intervalle à déterminer. On note φ la bijection réciproque associée.
- 3. Dresser le tableau de variation de φ .

Exercice 7 - Théorème de la bijection. [S'inspirer de l'Exemple 2.22]

- 1. Montrer que l'équation $\ln(x) = e^{-x}$ admet une unique solution α dans l'intervalle $]0, +\infty[$.
- 2. Montrer que $1 < \alpha < e$. On pourra commencer par montrer que $f(1) < f(\alpha) < f(e)$.

Exercice 8 - Théorème de la bijection. [S'inspirer de l'Exemple 2.23]

On considère la fonction

$$f :]0, +\infty[\rightarrow \mathbb{R}$$

$$x \mapsto x \ln(x)$$

- 1. Dresser le tableau de variations de la fonction f (limites comprises).
- 2. Montrer que pour tout $n \in \mathbb{N}$, l'équation f(x) = n admet une unique solution $u_n \in \mathbb{R}^+_+$.
- 3. Préciser la valeur de u_0 .
- 4. Comparer $f(u_n)$ et $f(u_{n+1})$. En déduire le sens de monotonie de $(u_n)_{n\in\mathbb{N}}$.
- 5. Soit $n \ge 1$. Montrer que $u_n \ge \sqrt{n}$. On pourra utiliser le fait que pour tout x > 0, $\ln(x) \le x$.
- 6. Quelle est la limte de u_n lorsque n tend vers $+\infty$?

Exercice 9 – Théorème de la bijection. On considère les fonctions f et g définies par

$$f : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{e^x}{1 + e^x}$$

$$f: \mathbb{R} \to \mathbb{R}$$
 $g: \mathbb{R} \to \mathbb{R}$ $x \mapsto \frac{e^x}{1+e^x}$ $y \mapsto f(x)-x$

- 1. Étudier les variations de f.
- 2. Étudier les variations de g.
- 3. Montrer que l'équation g(x) = 0 admet une unique solution, que l'on notera α .
- 4. En déduire le signe de g(x) pour tout $x \in \mathbb{R}$.
- 5. On considère une suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 > \alpha$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n).$

- (a) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n > \alpha$.
- (b) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante. On pourra utiliser la question 3.
- (c) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge et que sa limite vaut α .

Exercice 10 - Théorème de la bijection. On considère la fonction

$$f : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^3 - 3x^2 + 1$$

- 1. Dresser le tableau de variations de f (limites comprises).
- 2. Tracer l'allure de la courbe.
- 3. Montrer que l'équation f(x) = 0 admet exactement trois solutions réelles.

Exercice 11 – Suites définies de manière implicite. Soit $n \in \mathbb{N}$, $n \geqslant 3$. On considère la fonction

$$f_n : \mathbb{R} \to \mathbb{R}$$

 $x \mapsto e^x - nx$

- 1. Démontrer que l'équation $f_n(x) = 0$ admet une unique solution u_n sur l'intervalle $]-\infty, \ln(n)]$ et une unique solution v_n sur $[\ln(n), +\infty[$.
- 2. Déterminer la limite de la suite $(v_n)_{n\geq 3}$.
- 3. Démontrer que $u_n \ge 0$ pour tout $n \ge 3$.
- 4. Soit $n \ge 3$. Démontrer que $f_{n+1}(u_n) = -u_n$ puis que $f_{n+1}(u_n) \le f_{n+1}(u_{n+1})$. En déduire que que $(u_n)_{n\geq 3}$ est décroissante.
- 5. Montrer que $(u_n)_{n\geqslant 3}$ converge vers un réel $\ell\geqslant 0$.
- 6. Démontrer, en utilisant un raisonnement par l'absurde, que $\lim_{n \to \infty} u_n = 0$.

Exercice 12 - Étude d'une suite définie par récurrence. On considère la fonction

$$f : [0, +\infty[\to \mathbb{R}$$

$$x \mapsto \frac{x^2 + 8}{6}$$

et une suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 \in [0,2[$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

- 1. Justifier que f est continue.
- 2. Étudier les variations de f sur \mathbb{R}_+ .
- 3. Tracer la courbe représentative de f et la droite d'équation y = x sur le même schéma.
- 4. Résoudre l'équation f(x) = x d'inconnue $x \in \mathbb{R}_+$.
- 5. Donner le signe de f(x) x pour $x \in \mathbb{R}_+$.
- 6. Montrer que pour tout $x \in [0,2]$, $f(x) \in [0,2]$.
- 7. En déduire par récurrence que pour tout $n \in \mathbb{N}$, $u_n \in [0,2]$?
- 8. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante. On pourra utiliser la question 5.
- 9. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un certain réel ℓ .
- 10. Montrer que $f(\ell) = \ell$. En déduire la valeur de ℓ .

Exercice 13 – Existence d'un point fixe. Soit $f:[0,1] \longrightarrow [0,1]$ une fonction continue. Montrer que f admet un point fixe, c'est-à-dire que l'équation f(x) = x admet au moins une solution dans [0, 1].

Exercice 14 – Ecricome 2023. On considère la fonction f définie sur $]0, +\infty[$ par

$$\forall x \in]0, +\infty[, \qquad f(x) = \frac{\exp\left(\frac{x}{2}\right)}{\sqrt{x}}$$

On rappelle que 2 < e < 3. On admet que f est dérivable sur $]0, +\infty[$.

1. (a) Montrer que

$$\forall x \in]0, +\infty[, \qquad f'(x) = \frac{(x-1)}{2x} f(x)$$

(b) Dresser le tableau de variations de f et déterminer les limites suivantes

$$\lim_{x \to 0} f(x) \qquad \text{et} \qquad \lim_{x \to +\infty} f(x)$$

- (c) Tracer l'allure de la courbe représentative de f.
- (d) Montrer que, pour tout entier n supérieur ou égal à 2, l'équation f(x) = n, d'inconnue x dans $]0,+\infty[$ possède exactement deux solutions u_n et v_n avec

$$0 < u_n < 1 < v_n$$

- 2. (a) Montrer que la suite $(v_n)_{n\geq 2}$ est croissante.
 - (b) Montrer par l'absurde que la suite $(v_n)_{n\geq 2}$ tend vers $+\infty$ quand n tend vers $+\infty$.
- 3. (a) Montrer que la suite $(u_n)_{n\geq 2}$ est décroissante.
 - (b) Montrer que la suite $(u_n)_{n\geq 2}$ converge vers une limite finie que l'on notera ℓ .
 - (c) Montrer par l'absurde que $\ell = 0$.