TD 23 - CALCULS DE PRIMITIVES

Exercice 1 - Donner une primitive pour chacune des fonctions suivantes en précisant les intervalles de validité.

$$1. x \mapsto 5$$

$$5. x \mapsto 2x$$

$$2. x \mapsto 3x^2$$

6.
$$x \mapsto nx^{n-1}$$
 avec $n \in \mathbb{Z}$

$$3. x \mapsto \frac{1}{x}$$

$$7. x \mapsto \frac{1}{2\sqrt{x}}$$

4.
$$x \mapsto e^x$$

8.
$$x \mapsto \alpha x^{\alpha - 1}$$
 avec $\alpha \in \mathbb{R}$

Exercice 2 - Donner une primitive pour chacune des fonctions suivantes en précisant les intervalles de validité.

$$1. x \mapsto x^2 - 3x + 5$$

$$5. x \mapsto \frac{e^x + e^{-x}}{2}$$

$$9. x \mapsto \sqrt{2x} + 3$$

$$2. x \mapsto \frac{x^3}{3} + \frac{x^4}{4}$$

6.
$$x \mapsto e^{3x} + e^{-5x} - 2e^{7x}$$

10.
$$x \mapsto \frac{1}{x^3} - \frac{1}{x^2}$$

3.
$$x \mapsto e^{-3x} + x^3 - 1$$
 7. $x \mapsto \frac{1}{2^{2x}}$

$$7. x \mapsto \frac{1}{e^{2x}}$$

11.
$$x \mapsto \frac{8}{x\sqrt{x}}$$

$$4. x \mapsto \frac{1}{x} + x^2$$

$$8. x \mapsto \frac{1}{x} - \frac{1}{2x}$$

$$12. x \mapsto x(x+2)^2$$

Exercice 3 - Donner une primitive pour chacune des fonctions suivantes en précisant les intervalles de validité.

$$1. x \mapsto \frac{x}{(1+x^2)^2}$$

$$5. x \mapsto \frac{x}{x-4}$$

$$9. x \mapsto (2x^2 - 3)^2$$

2.
$$x \mapsto (x+1)e^{x^2+2x}$$

$$6. x \mapsto \frac{\ln(x)}{x}$$

$$10. x \mapsto \frac{1}{(x-1)^3}$$

$$3. x \mapsto \frac{x^2}{x^3 + 1}$$

$$7. x \mapsto \frac{1}{x \ln(x)}$$

$$11. x \mapsto \frac{e^x}{1 - e^x}$$

4.
$$x \mapsto e^x (2e^x - 3)^3$$

8.
$$x \mapsto \frac{3x-6}{\sqrt{x^2-4x+3}}$$
 12. $x \mapsto \frac{\ln(x)^2}{x}$

12.
$$x \mapsto \frac{\ln(x)^2}{x}$$

Exercice 4 – Donner l'ensemble des primitives de $f: x \mapsto \frac{x^3}{(x^4+1)^3}$ sur \mathbb{R} .

Exercice 5 – Dans chaque cas, donner l'unique primitive F de f telle que $F(x_0) = y_0$ sur l'intervalle donné.

1.
$$f: x \mapsto x^3 - 3x^2 + 7$$
 avec $x_0 = 1$ et $y_0 = 2$ sur \mathbb{R} .

2.
$$f: x \mapsto \frac{1}{2}e^{3x} + 2x^4 - 1$$
 avec $x_0 = 0$ et $y_0 = 0$ sur \mathbb{R} .

3.
$$f: x \mapsto e^{-x} + \frac{2}{x}$$
 avec $x_0 = 1$ et $y_0 = 1$ sur $]0, +\infty[$.

Exercice 6 – On considère la fonction f définie sur $]-\infty,1[$ par

$$\forall x < 1, \qquad f(x) = \frac{2x+1}{x^2 - 4x + 3}$$

- 1. Justifier que f admette une primitive sur $]-\infty,1[$.
- 2. Déterminer $(a,b) \in \mathbb{R}^2$ tels que :

$$\forall x \in]-\infty,1[, \qquad f(x) = \frac{a}{x-1} + \frac{b}{x-3}.$$

3. En déduire une primitive de f sur $]-\infty,1[$.

Exercice 7 – On considère la fonction g définie sur $I = \left[\frac{1}{2}, +\infty\right]$ par

$$\forall x > \frac{1}{2}, \qquad g(x) = \frac{1}{4x^2 - 4x + 1}$$

- 1. Justifier que g admette une primitive sur I.
- 2. Factoriser, pour $x \in \mathbb{R}$, $4x^2 4x + 1$.
- 3. En déduire une primitive de g sur I

Exercice 8 – Déterminer l'ensemble des primitives de la fonction valeur absolue $x \mapsto |x|$ sur \mathbb{R} .