Mathématiques - ECG1 TD 07 - Suites

TD 07 - SUITES

Exercice 1 - Récurrences en vrac. Les questions de cet exercice sont indépendantes.

1. Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=11$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=5u_n$. Montrer par récurrence que

pour tout
$$n \in \mathbb{N}$$
, $u_n = 11 \times 5^n$

2. Soit $(v_n)_{n\in\mathbb{N}}$ la suite définie par $v_0=4$ et pour tout $n\in\mathbb{N}$, $v_{n+1}=\frac{6}{10}v_n+2$. Montrer par récurrence

pour tout
$$n \in \mathbb{N}$$
, $3 < v_n < 5$

3. Pour tout $n \in \mathbb{N}^*$, on note $S_n = 1 + 2 + \cdots + n$. Montrer par récurrence que,

pour tout
$$n \in \mathbb{N}^*$$
, $S_n = \frac{n(n+1)}{2}$

Exercice 2 - Calcul des termes d'une suite. Dans chaque cas, donner les quatre premiers termes des suites suivantes.

1. On définit la suite $(u_n)_{n\in\mathbb{N}}$ définie par

pour tout
$$n \in \mathbb{N}$$
, $u_n = \frac{n+1}{2n+1}$.

2. On définit la suite $(v_n)_{n\in\mathbb{N}}$ définie par

$$v_0 = 2$$
 et pour tout $n \in \mathbb{N}$, $v_{n+1} = v_n + 2^n$.

3. On définit la suite $(w_n)_{n\in\mathbb{N}}$ définie par

$$w_0 = 1$$
, $w_1 = -2$ et pour tout $n \in \mathbb{N}$, $w_{n+2} = 2w_n - w_{n+1}$.

Exercice 3 - Monotonie d'une suite. Étudier le sens de variation des suites de termes généraux suivants, définis pour tout $n \in \mathbb{N}^*$ par,

1)
$$u_n = 5 - 3^n$$
 (Méthode 1)

1)
$$u_n = 5 - 3^n$$
 (Méthode 1) 3) $u_n = \frac{n-1}{n+2}$ (Méthode 1)

2)
$$u_n = n - n^2$$
 (Méthode 1)

2)
$$u_n = n - n^2$$
 (Méthode 1) 4) $u_n = \frac{2^n}{n}$ (Méthode 2)

Exercise 4 – Monotonie d'une suite. On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par, pour tout $x \in \mathbb{R}$, $f(x) = \exp(-x) - 1$ et on considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par, pour tout $n \in \mathbb{N}$, $u_n = f(n)$.

- 1. Montrer que la fonction f est décroissante sur \mathbb{R} .
- 2. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante sur \mathbb{R} .

Exercice 5 – Suites bornées. Étudier le caractère borné des suites suivantes (on pourra représenter graphiquement les premiers termes de la suite pour conjecturer le caractère majoré/minoré/borné de la suite).

1) Pour tout
$$n \in \mathbb{N}$$
, $u_n = (-1)^n$,

1) Pour tout
$$n \in \mathbb{N}$$
, $u_n = (-1)^n$, 2) Pour tout $n \in \mathbb{N}^*$, $v_n = \frac{1}{2n}$,

3) Pour tout
$$n \in \mathbb{N}^*$$
, $w_n = (-1)^n \left(1 - \frac{1}{n}\right)$, 4) Pour tout $n \in \mathbb{N}^*$, $z_n = \frac{1}{n} + (-1)^n$

Exercice 6 – Suites arithmétiques. Pour chacune des suites, déterminer la valeur de u_n en fonction de n.

1)
$$\begin{cases} u_0 = 1 \\ \text{pour tout } n \in \mathbb{N}, \ u_{n+1} = u_n + 3 \end{cases}$$
2)
$$\begin{cases} u_0 = -2 \\ \text{pour tout } n \in \mathbb{N}, \ u_{n+1} = u_n - 4 \end{cases}$$

$$2) \begin{cases} u_0 = -2 \\ \text{pour tout } n \in \mathbb{N}, \ u_{n+1} = u_n - 4 \end{cases}$$

3)
$$\begin{cases} u_0 = -\frac{1}{5} \\ \text{pour tout } n \in \mathbb{N}, \ u_{n+1} = u_n + \frac{1}{2} \end{cases}$$

Mathématiques – ECG1 TD 07 – Suites

Exercice 7 – Suites géométriques. Pour chacune des suites, déterminer la valeur de u_n en fonction de n.

1)
$$\begin{cases} u_0 = 1 \\ \text{pour tout } n \in \mathbb{N}, \ u_{n+1} = 7u_n \end{cases}$$
2)
$$\begin{cases} u_0 = 2 \\ \text{pour tout } n \in \mathbb{N}, \ u_{n+1} = -3u_n \end{cases}$$
3)
$$\begin{cases} u_0 = 4 \\ \text{pour tout } n \in \mathbb{N}, \ u_{n+1} = \frac{1}{11}u_n \end{cases}$$

Exercice 8 – Suites arithmético-géométriques. Pour chacune des suites, déterminer la valeur de u_n en fonction de n.

1)
$$\begin{cases} u_0 = 1 \\ \text{pour tout } n \in \mathbb{N}, \ u_{n+1} = 4u_n - 6 \end{cases}$$
 2)
$$\begin{cases} u_0 = -\frac{1}{4} \\ \text{pour tout } n \in \mathbb{N}, \ u_{n+1} = \frac{1}{3}u_n + \frac{1}{2} \end{cases}$$

Exercice 9 – Suites récurrences linéaires d'ordre 2. Pour chacune des suites, déterminer la valeur de u_n en fonction de n.

1)
$$\begin{cases} u_0 = 0, u_1 = 1 \\ \text{pour tout } n \in \mathbb{N}, \ u_{n+2} = 3u_{n+1} - 2u_n \end{cases}$$
2)
$$\begin{cases} u_0 = 1, u_1 = 9 \\ \text{pour tout } n \in \mathbb{N}, \ u_{n+2} = u_{n+1} - \frac{1}{4}u_n \end{cases}$$
3)
$$\begin{cases} u_0 = 0, u_1 = 1 \\ \text{pour tout } n \in \mathbb{N}, \ u_{n+2} = u_{n+1} - \frac{1}{2}u_n \end{cases}$$

Exercice 10 – On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par $u_0=1, v_0=2$ et pour tout entier naturel n,

$$u_{n+1} = 3u_n + 2v_n$$
 et $v_{n+1} = 2u_n + 3v_n$.

- 1. Montrer que la suite $(v_n u_n)_{n \in \mathbb{N}}$ est constante. Préciser sa valeur.
- 2. Montrer que $(u_n)_{n\in\mathbb{N}}$ est une suite arithmético-géométrique.
- 3. Déterminer les termes généraux des suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$.

Exercice 11 – Soit *u* la suite définie par $u_0 = 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{2 + u_n}$.

- 1. Montrer que, pour tout $n \in \mathbb{N}$, u_n existe et $0 \le u_n \le 2$.
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante grâce à un raisonnement par récurrence.

Exercice 12 - Extrait Ecricome 2018.

1. On note

$$\varphi = \frac{1 + \sqrt{5}}{2}.$$

- (a) Montrer que $\varphi > 1$.
- (b) Montrer que les réels φ et $-\frac{1}{\varphi}$ sont les solutions de l'équation suivante

$$x^2 - x - 1 = 0$$
.

2. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par, $u_0=0, u_1=1$ et

$$\forall n \in \mathbb{N}, \quad u_{n+2} = u_{n+1} + u_n.$$

Justifier qu'il existe des réels A et B tels que

$$\forall n \in \mathbb{N}, \quad u_n = A\varphi^n + B\left(-\frac{1}{\varphi}\right)^n.$$