TD 07 – SUITES (CORRECTION)

Exercice 1 - 1.

Propriété P_n .

$$P_n$$
: " $u_n = 11 \cdot 5^n$ "

Initialisation. Pour $n = 0, u_0 = 11 = 11 \cdot 5^0$.

Donc P_0 est vraie.

Hérédité. Supposons P_n vraie : $u_n = 11 \cdot 5^n$. Alors

$$u_{n+1} = 5u_n = 5 \cdot (11 \cdot 5^n) = 11 \cdot 5^{n+1}$$

donc P_{n+1} est vraie.

Conclusion. Par récurrence, P_n est vraie pour tout $n \in \mathbb{N}$,

donc pour tout $n \in \mathbb{N}$ $u_n = 11 \cdot 5^n$.

2. Propriété P_n .

$$P_n$$
: "3 < v_n < 5"

Initialisation.

 $v_0 = 4$ et 3 < 4 < 5. Donc P_0 est vraie.

Hérédité Soit
$$n \in \mathbb{N}$$
, supposons P_n vraie : $3 < v_n < 5$ donc $\frac{6}{10} \cdot 3 < \frac{6}{10} v_n < \frac{6}{10} \cdot 5$ (car $\frac{6}{10} > 0$)

donc, $1, 8 < \frac{6}{10}v_n < 3$.

donc,
$$1, 8 + 2 < \frac{6}{10}v_n + 2 < 3 + 2$$

donc, $3, 8 < v_{n+1} < 5$.

En particulier, $3 < v_{n+1} < 5$. Ainsi P_{n+1} est vraie.

Conclusion.

Par récurrence, P_n est vraie pour tout $n \in \mathbb{N}$

Donc pour tout $n \in \mathbb{N}, 3 < v_n < 5$.

3.

Propriété P_n .

$$P_n: \quad "S_n = \frac{n(n+1)}{2}"$$

Initialisation.

Pour $n = 1, S_1 = 1 = \frac{1 \cdot 2}{2}$. Donc P_1 est vraie.

Hérédité.

Soit $n \ge 1$, supposons P_n vraie : $S_n = \frac{n(n+1)}{2}$.

Alors

$$S_{n+1} = S_n + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}$$

donc P_{n+1} est vraie.

Conclusion.

Par récurrence, P_n est vraie pour tout $n \ge 1$, donc pour tout $n \ge 1$ $S_n = \frac{n(n+1)}{2}$.

Exercice 2 – 1.
$$u_0 = 1, u_1 = \frac{2}{3}, u_2 = \frac{3}{5}, u_3 = \frac{4}{7}$$

2. $v_0 = 2, v_1 = 3, v_2 = 5, v_3 = 9$

2.
$$v_0 = 2, v_1 = 3, v_2 = 5, v_3 = 9$$

3.
$$w_0 = 1, w_1 = -2, w_2 = 4, w_3 = -8$$

Exercice 3 - 1. $\forall n \in \mathbb{N}, \quad u_{n+1} - u_n = -2 \times 3^n \le 0$

Donc $(u_n)_n$ décroissante

2.
$$\forall n \in \mathbb{N}, \quad u_{n+1} - u_n = -2n \le 0$$

Donc $(u_n)_n$ décroissante

3. $\forall n \in \mathbb{N}, \quad u_{n+1} - u_n = \frac{3}{(n+3)(n+2)} \ge 0$

Donc $(u_n)_n$ croissante

4.
$$\forall n \in \mathbb{N}^*$$
, $\frac{u_{n+1}}{u_n} = 2\left(1 - \frac{1}{n+1}\right) \ge 2\left(1 - \frac{1}{2}\right) = 1$

Donc $(U_n)_n$ croissante

Exercice 4 – 1. Calculons la dérivée:

$$f'(x) = -e^{-x}$$

Pour tout $x \in \mathbb{R}, e^{-x} > 0$, donc $f'(x) = -e^{-x} < 0$. Ainsi f' est strictement négative sur \mathbb{R} , donc f est strictement décroissante sur \mathbb{R} .

2. Comme f est décroissante, pour tout x < y on a f(x) > f(y). En particulier, pour tout entier n,

$$n < n+1 \Longrightarrow f(n) > f(n+1)$$
.

Donc pour tout $n \in \mathbb{N}$,

$$u_n = f(n) > f(n+1) = u_{n+1}$$

ce qui signifie que la suite (u_n) est strictement décroissante.

Exercice 5 – 1. $\forall n \in \mathbb{N}, |u_n| = |(-1)^n| = 1$ donc la suite $(u_n)_n$ est bornée.

2. $\forall n \in \mathbb{N}^*, 0 \le v_n \le \frac{1}{2}$ donc la suite $(v_n)_n$ est bornée.

3. $\forall n \in \mathbb{N}^*, |w_n| = 1 - \frac{1}{n} \le 1$ donc $\forall n \in \mathbb{N}^*, -1 \le w_n \le 1$. Donc la suite (w_n) est bornée.

4. $\forall n \in \mathbb{N}^*, |z_n| = \left|\frac{1}{n} + (-1)^n\right| \le \frac{1}{n} + 1 \le 2$ donc $\forall n \in \mathbb{N}^*, -2 \le z_n \le 2$ Donc la suite $(z_n)_n$ est bornée.

Exercice 6 – 1. $\forall n \in \mathbb{N}, \quad u_n = 1 + 3n$

2.
$$\forall n \in \mathbb{N}, u_n = -2 - 4n$$

3.
$$\forall n \in \mathbb{N}, u_n = -\frac{1}{5} + \frac{n}{2}$$

Exercice 7 – 1. $\forall n \in \mathbb{N}, u_n = 7^n$

2.
$$\forall n \in \mathbb{N}, u_n = 2 \times (-3)^n$$

3. $\forall n \in \mathbb{N}, u_n = 4 \times \left(\frac{1}{11}\right)^n$

3.
$$\forall n \in \mathbb{N}, u_n = 4 \times \left(\frac{1}{11}\right)^n$$

Exercice 8 – 1. $\forall n \in \mathbb{N}, \quad u_n = 2 - 4^n$ **2.** $\forall n \in \mathbb{N}, u_n = \frac{3}{4} - \left(\frac{1}{3}\right)^n$

2.
$$\forall n \in \mathbb{N}, u_n = \frac{3}{4} - \left(\frac{1}{3}\right)^n$$

Exercise 9 - 1. $\forall n \in \mathbb{N}, u_n = 2^n - 1$ 2. $\forall n \in \mathbb{N}, u_n = (1 + 17n) \frac{1}{2^n}$

2.
$$\forall n \in \mathbb{N}, u_n = (1+17n)\frac{1}{2^n}$$

3.
$$\forall n \in \mathbb{N}$$
, On me peut pas conclure

Exercice 10 – 1) Posons $\forall n \in \mathbb{N}$, $w_n := v_n - u_n$

On a, $\forall n \in \mathbb{N}$ $w_{n+1} - w_n = 0$ Donc $\forall n \in \mathbb{N}$, $w_n = w_0 = 1$. 2) Soit $n \in \mathbb{N}$. On a:

$$u_{n+1} = 3u_n + 2v_n$$

= $3u_n + 2(1 + u_n)$
= $5u_n + 2$

Donc
$$(u_n)_n$$
 arithmético-geométrique
3) $\forall n \in \mathbb{N}, \quad u_n = \frac{3}{2} \times 5^n - \frac{1}{2} \ \forall n \in \mathbb{N}, \quad v_n = \frac{3}{2} \times 5^n + \frac{1}{2}$

Exercice 11 -

Exercice 12 -