Mathématiques – ECG1 Colle 06

COLLE 06 - Semaine du 3/11 au 7/11

La colle débutera par une <u>question de cours</u> et un <u>exercice de cours</u> (voir page 2).

Chapitre 6 - Sommes Et Produits

- Notation ∑
- Les sommes de références
 - Somme d'une constante
 - Somme des entiers
 - Somme des entiers aux carrés
 - Somme géométrique
- Linéarité de la somme
- Sommes télescopiques
- Changement d'indice dans une somme
- Sommes doubles
- Notation ∏
- Produit d'une constante
- Règles de manipulation des produits
- Produits télescopiques
- Changement d'indice dans un produit
- Notion de factorielle

Chapitre 7 - Etude d'une suite numérique

- Modes de **définition** d'une suite (explicite ou par récurrence)
- Représentation graphique d'une suite
- Rappel sur la démonstration par récurrence
- Variations d'une suite : suite constante, stationnaire, croissante, décroissante
- Suites majorées/minorées/bornées
- Suites **remarquables** : suites arithmétiques, géométriques, arithmético-géométriques, récurrentes linéaires d'ordre 2

NOTES POUR LES COLLEURS/COLLEUSES : La notion de limite d'une suite n'a pas été abordée dans ce chapitre.

Informatique

- Calculs simples en python: +,-,*,/,**
- Notion de variables. Afficher une valeur avec print.
- Maitriser la notion d'instruction conditionnelle
- Savoir définir une fonction

Mathématiques – ECG1 Colle 06

Questions de cours & exercices de cours

Une <u>question de cours</u> et un <u>exercice du cours</u> seront demandés parmi les suivants. La question de cours sera notée sur cinq points, et de même pour l'exercice de cours, soit un total de **10 points** (sur les 20 au total). *Néanmoins, tout énoncé du cours pourra faire l'objet d'une question de cours, à tout moment de la colle.*

Un énoncé:

☐ Donner la somme d'une constante	(Chap 6 - Prop 1.5)
☐ Donner la somme des entiers et des entiers au carré	(Chap 6 - Prop 1.7)
☐ Donner la somme d'une suite géométrique	(Chap 6 - Prop 1.10)
☐ Définition de la factorielle	(Chap 6 - Def 2.10)
☐ Définition d'une suite croissante	(Chap 7 - Def 3.3)
☐ Définition d'une suite majorée	(Chap 7 - Def 3.6)

Un exercice:

□ Soit $n \in \mathbb{N}$. Calculer le produit suivant

(Chap 6 - Ex 2.6)

$$\prod_{k=0}^{n} \frac{4^k}{2}$$

□ Soit $n \in \mathbb{N}^*$. Calculer le produit suivant

(Chap 6 - Ex 2.8)

$$\prod_{k=1}^{n} \frac{\sqrt{k+1}}{\sqrt{k}}$$

 \square On définit la suite $(u_n)_{n\in\mathbb{N}}$ par

$$\left\{ \begin{array}{l} u_0=2\\ \text{pour tout } n\in\mathbb{N},\ u_{n+1}=|u_n^2-2| \end{array} \right.$$

Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n = 2$.

(Chap 7 - Ex 3.2)

☐ Etudier la monotonie des deux suites suivantes.

(Chap 7 - Ex 3.4)

a)
$$\forall n \in \mathbb{N}$$
, $u_n = \frac{n}{n+1}$
b) $v_0 = 2$ et $\forall n \in \mathbb{N}$, $v_{n+1} = v_n^2 + v_n + 2$

 \square Déterminer l'expression explicite de la suite $(u_n)_{n\in\mathbb{N}}$ définie par son premier terme $u_0=5$ et par la relation de récurrence, donnée par, pour tout $n\in\mathbb{N}$, $u_{n+1}=3u_n-4$. (Chap 7 - Ex 4.7)