
Chapitre 8 : Calcul Matriciel
1 Les matrices

1.1 Définitions
Définition 1.1 — Matrice. On appelle matrice à n lignes et p colonnes un tableau de nombres réels
possédant n lignes et p colonnes, que l’on note de la forme

A = (ai, j)1⩽i⩽n
1⩽ j⩽p

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1,1 a1,2 . . . a1,p

a2,1 a2,2 . . . a2,p

⋮ ⋮ ⋮ ⋮

an,1 an,2 . . . an,p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Pour i ∈ J1,nK et j ∈ J1, pK, le coefficient d’indice (i, j), noté ai, j, est le nombre réel placé à la i-ème
ligne et j-ème colonne.

Exemple 1.2 On considère la matrice suivante

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 4 −1 0

0 1 8 7

9 −3 6 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Indiquer (si c’est possible) les coefficients suivants de la matrice.

a1,3 = −1 a3,4 = 0 a4,3 = n’existe pas

a3,1 = 9 a2,3 = 8 a1,1 = 2

Exemple 1.3 Écrire en extension les deux matrices suivantes :

A = (i+ j)1⩽i⩽3
1⩽ j⩽2

et A = ((−1)i+ j)1⩽i⩽2
1⩽ j⩽4

On a

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 3

3 4

4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

et B =

⎛
⎜⎜⎜⎜⎜
⎝

1 −1 1 −1

−1 1 −1 0

⎞
⎟⎟⎟⎟⎟
⎠

Définition 1.4 — Ensemble de matrices.
• On note Mn,p(R) l’ensemble des matrices à n lignes et p colonnes.
• On note Mn(R) l’ensemble des matrices à n lignes et n colonnes (matrices carrées).
• Une matrice colonne est une matrice qui ne possède qu’une seule colonne.
• Une matrice ligne est une matrice qui ne possède qu’une seule ligne.

Calcul matriciel 1/14



Exemple 1.5 Pour les matrices suivantes, donner le nombre de lignes, de colonnes, et l’ensemble Mn,p(R)
auquel elles appartiennent.

Matrice Nbre Lignes Nbre Colonnes Mn,p(R)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0

2 −1

1 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

3 2 A ∈M3,2(R)

B =

⎛
⎜⎜⎜⎜⎜
⎝

6 3

9 −1

⎞
⎟⎟⎟⎟⎟
⎠

2 2 B ∈M2(R)

C = (1 2 1) 1 3 C ∈M1,3(R) (matrice ligne)

D =

⎛
⎜⎜⎜⎜⎜
⎝

0

9

⎞
⎟⎟⎟⎟⎟
⎠

2 1 D ∈M2,1(R) (matrice colonne)

Définition 1.6 — Égalité de deux matrices. Soient A = (ai, j) ∈Mn,p(R) et B = (bi, j) ∈Mn,p(R). On a

A = B ⇔ ∀(i, j) ∈ J1,nK× J1, pK, ai, j = bi, j

Autrement dit, deux matrices sont égales si elles ont le même nombre de lignes, de colonnes, et les mêmes
coefficients aux mêmes places.

Exemple 1.7 Pour quelle·s valeur·s de (x,y) ∈ R2 les deux matrices suivantes sont-elles égales?

A =

⎛
⎜⎜⎜⎜⎜
⎝

x+ y 0

x− y 0

⎞
⎟⎟⎟⎟⎟
⎠

et B =

⎛
⎜⎜⎜⎜⎜
⎝

2 0

4 0

⎞
⎟⎟⎟⎟⎟
⎠

On a

A = B ⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x+ y = 2
0 = 0
x− y = 4
0 = 0

⇔ {x+ y = 2
x− y = 4

⇔ {x+ y = 2
−2y = 2

⇔ {x = 3
y = −1

1.2 Matrices particulières
Définition 1.8 — Matrice nulle & Matrice Identité.

• La matrice de taille (n, p) dont tous les coefficients sont nuls est appelée matrice nulle et notée
0n,p (ou simplement 0n lorsque n = p).

• La matrice carrée de taille (n,n) contenant des 1 sur la diagonales et des 0 partout ailleurs est
appelée matrice identité de taille n et notée In.

Exemple 1.9 Les matrices 02,3 et I3 sont données respectivement par,

02,3 =

⎛
⎜⎜⎜⎜⎜
⎝

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

et I3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Définition 1.10 — Matrice diagonale & Matrice triangulaire.
Soit A = (ai, j) ∈Mn(R) une matrice carrée. On dit que
• A est diagonale lorsque ∀i ≠ j,ai j = 0.
• A est triangulaire inférieure lorsque ∀i < j, ai j = 0.
• A est triangulaire supérieure lorsque ∀i > j, ai j = 0.

Exemple 1.11 Pour les matrices suivantes, dire lesquelles sont diagonales, triangulaires supérieures ou
triangulaires inférieures.

Matrice Diagonale Triangulaire supérieure Triangulaire inférieure

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−5 1 3

0 1 8

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Non Oui Non

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4 0 0

1 2 0

7 0 −5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Non Non Oui

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

8 0 0

0 7 0

0 0 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Oui Oui Oui

⎛
⎜⎜⎜⎜⎜
⎝

6 3

9 −1

⎞
⎟⎟⎟⎟⎟
⎠

Non Non Non

2 Opérations sur les matrices
2.1 Addition de matrices

Définition 2.1 — Addition de deux matrices. Pour A = (ai, j) et B = (bi, j) deux matrices de Mn,p(R), on
définit la matrice A+B comme la matrice dont, pour tout i ∈ J1,nK et j ∈ J1, pK, le coefficient d’indice
(i, j) est donné par

ai, j +bi, j.

Autrement dit, pour sommer deux matrices de même taille, on fait la somme terme à terme des coefficients.

! Attention, on ne peut pas additionner deux matrices qui n’ont pas la même taille !

Exemple 2.2 On considère les deux matrices A et B, données par

A =

⎛
⎜⎜⎜⎜⎜
⎝

1 −1 2

0 1 0

⎞
⎟⎟⎟⎟⎟
⎠

et B =

⎛
⎜⎜⎜⎜⎜
⎝

−6 11 0

3 5 9

⎞
⎟⎟⎟⎟⎟
⎠

Calculer la matrice A+B.

On a

A+B =

⎛
⎜⎜⎜⎜⎜
⎝

1 −1 2

0 1 0

⎞
⎟⎟⎟⎟⎟
⎠
+

⎛
⎜⎜⎜⎜⎜
⎝

−6 11 0

3 5 9

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

−5 10 2

3 6 −4

⎞
⎟⎟⎟⎟⎟
⎠
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Proposition 2.3 — Règles de calculs pour l’addition.
Soient A,B et C des matrices de Mn,p(R). Alors,

• A+B = B+A ↝ l’addition est commutative dans Mn,p(R)

• A+ (B+C) = (A+B)+C ↝ l’addition est associative dans Mn,p(R)

• A+0n,p = 0n,p +A = A ↝ 0n,p est un élément neutre pour l’addition dans Mn,p(R)

! Ces règles de calcul pour l’addition de matrices sont analogues à ceux de l’addition de nombres réels.

2.2 Produit d’une matrice par un nombre réel
Définition 2.4 — Produit d’une matrice par un nombre réel. Pour A = (ai, j) une matrice de Mn,p(R) et
λ ∈ R, on définit la matrice λ ⋅A (ou λA) comme la matrice dont, pour tout i ∈ J1,nK et j ∈ J1, pK, le
coefficient d’indice (i, j) est donné par

λ ×ai, j

Autrement dit, pour multiplier une matrice par un nombre réel, on fait la mutiplication de tous les
coefficients par ce nombre réel. Par convention, on note toujours le scalaire à gauche de la matrice.

Exemple 2.5 On considère la matrice A donnée par

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1

2 0

−4 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Calculer les matrices 0 ⋅A,1 ⋅A,2 ⋅A et (−1) ⋅A.

On a

0 ⋅A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0

0 0

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1 ⋅A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1

2 0

−4 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

2 ⋅A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −2

4 0

−8 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(−1) ⋅A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1

−2 0

4 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Proposition 2.6 — Règles de calculs pour la multiplication par un scalaire.
Soient A et B deux matrices de Mn,p(R) et (α,β) ∈ R2.

• (α +β)A = αA+βA • (α ×β)A = α(βA) • α(A+B) = αA+αB

! Ces règles de calcul pour la multiplication par un scalaire sont analogues à ceux avec les nombres.
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2.3 Produit d’une matrice ligne par une matrice colonne
Jusque là, les calculs se passent de manière comparable aux calculs sur les nombres réels. Attention,

pour la multiplication de deux matrices, cela se complique.

Définition 2.7 Soient

L = (x1 x2 ⋯ xn) ∈Mn,1(R) et C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y1

y2

⋮

yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈M1,n(R)

Alors

LC = (x1 x2 ⋯ xn)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y1

y2

⋮

yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= x1y1 + x2y2 +⋯+ xnyn =

n

∑
k=1

xkyk

! Ce produit n’existe que si le nombre de colonne de L est égal au nombre de ligne de C.

Exemple 2.8 Calculer les produits matriciels suivants.

(1 2 3)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 1×1+2×1+3×1 = 6

(1 0 −3 4)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1

6

4

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 1× (−1)+0×6+−(3)×4+4×3 = −1

(1 2 ⋯ n)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

2

⋮

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 1×1+2×2+⋯+n×n =

n

∑
k=1

k2
=

n(n+1)
2
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2.4 Produit de deux matrices

! Comme l’illustre le produit d’une matrice ligne et d’une matrice colonne, on peut définir le produit
A×B (noté simplement AB) d’une matrice A par B dès que le nombre de colonnes de A est égal au
nombre de lignes de B.

Définition 2.9 Pour A = (ai, j) ∈Mn,m(R) et B = (bi, j) ∈Mm,p(R), on définit le produit AB comme la
matrice de Mn,p(R), dont pour tout i ∈ J1,nK et j ∈ J1, pK, le coefficient d’indice (i, j) est donné par

Li(A)C j(B) =
m

∑
k=1

ai,kbk, j

où Li(A) désigne la ième ligne de A et C j(B) la jème colonne de B.

! Attention à la taille des matrices.
• Pour pouvoir calculer le produit AB, il faut que le nombre de colonnes de la matrice A soit égale

au nombre de lignes de matrice B.
• On a alors

(matrice n×m) ⋅ (matrice m× p) = matrice n× p

! Le produit matriciel diffère du produit sur les nombres réels car il n’est pas commutatif.
• Lorsqu’il est possible de calculer le produit AB, le produit BA n’est pas forcément défini.
• Lorsque les deux produits AB et BA sont définis, en général,

AB ≠ BA

Exemple 2.10 On considère les deux matrices suivantes

A =

⎛
⎜⎜⎜⎜⎜
⎝

3 2

1 1

⎞
⎟⎟⎟⎟⎟
⎠

et B =

⎛
⎜⎜⎜⎜⎜
⎝

7 0

−2 5

⎞
⎟⎟⎟⎟⎟
⎠

Calculer, si c’est possible, les matrices AB et BA.
• Comme le nombre de colonnes de la matrice A est égal au nombre de lignes de la matrice B, le produit

AB est possible et doit donner une matrice 2×2.

⎛
⎜⎜⎜⎜⎜
⎝

7 0

−2 5

⎞
⎟⎟⎟⎟⎟
⎠

AB =

⎛
⎜⎜⎜⎜⎜
⎝

3 2

1 1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

7 0

−2 5

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

3 2

1 1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

17 10

5 5

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

17 10

5 5

⎞
⎟⎟⎟⎟⎟
⎠

• Comme le nombre de colonnes de la matrice B est égal au nombre de lignes de la matrice A, le produit
BA est possible et doit donner une matrice 2×2.

⎛
⎜⎜⎜⎜⎜
⎝

3 2

1 1

⎞
⎟⎟⎟⎟⎟
⎠

BA =

⎛
⎜⎜⎜⎜⎜
⎝

7 0

−2 5

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

3 2

1 1

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

7 0

−2 5

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

21 14

−1 1

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

21 14

−1 1

⎞
⎟⎟⎟⎟⎟
⎠
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Exemple 2.11 On considère les matrices

A =

⎛
⎜⎜⎜⎜⎜
⎝

3 4

2 0

⎞
⎟⎟⎟⎟⎟
⎠

et B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 6

1 −1

2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Calculer, si c’est possible, les matrices AB et BA.

• Comme le nombre de colonnes de A n’est pas égal au nombre de lignes de B, on ne peut pas effecteur
le produit AB.

• Par contre, comme le nombre de colonnes de B est égal au nombre de lignes de A, on peut effecteur le
produit BA, et il vaut

⎛
⎜⎜⎜⎜⎜
⎝

3 4

2 0

⎞
⎟⎟⎟⎟⎟
⎠

BA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 6

1 −1

2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

3 4

2 0

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 6

1 −1

2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

6 −8

1 4

12 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

6 −8

1 4

12 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Exemple 2.12 On considère les matrices

A =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 1

0 1 −1

⎞
⎟⎟⎟⎟⎟
⎠

et B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a b

a c

d e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Calculer, si c’est possible, les matrices AB et BA.

• Comme le nombre de colonnes de A est égal au nombre de lignes de B, on peut effecteur le produit
AB, et il vaut

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a b

a c

d e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

AB =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 1

0 1 −1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a b

a c

d e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

1 0 1

0 1 −1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

a+d b+ e

a−d c− e

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

a+d b+ e

a−d c− e

⎞
⎟⎟⎟⎟⎟
⎠

• Comme le nombre de colonnes de B est égal au nombre de lignes de A, on peut effecteur le produit
BA, et il vaut
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⎛
⎜⎜⎜⎜⎜
⎝

1 0 1

0 1 −1

⎞
⎟⎟⎟⎟⎟
⎠

BA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a b

a c

d e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

1 0 1

0 1 −1

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a b

a c

d e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a b a−b

a c a− c

d e d − e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a b a−b

a c a− c

d e d − e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Proposition 2.13 — Règles de calcul pour le produit. Soient A ∈Mm,n(R), B ∈Mn,p(R), C ∈Mp,r(R) et
λ ∈ R.

• (AB)C = A(BC) • A(B+C) = AB+AC

• λ(AB) = (λA)B = A(λB) • (A+B)C = AC+BC

Exemple 2.14 On considère les matrices

A =

⎛
⎜⎜⎜⎜⎜
⎝

1 2 1

0 −1 1

⎞
⎟⎟⎟⎟⎟
⎠

et B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 −1

1 0 1

−1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

et C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −1 2

−1 1 1

3 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1. Calculer B+C puis A(B+C).
2. Calculer AB et AC puis AB+AC.
3. Vérifier que A(B+C) = AB+AC.

1. On a

B+C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 1

0 1 2

2 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

puis A(B+C) =
⎛
⎜⎜⎜⎜⎜
⎝

1 2 1

0 −1 1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 1

0 1 2

2 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

3 4 7

2 1 0

⎞
⎟⎟⎟⎟⎟
⎠

2. On a

AB =

⎛
⎜⎜⎜⎜⎜
⎝

1 2 1

0 −1 1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 −1

1 0 1

−1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

2 3 2

−2 2 0

⎞
⎟⎟⎟⎟⎟
⎠

Puis, on a

AC =

⎛
⎜⎜⎜⎜⎜
⎝

1 2 1

0 −1 1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −1 2

−1 1 1

3 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

1 1 5

4 −1 0

⎞
⎟⎟⎟⎟⎟
⎠

puis AB+AC =

⎛
⎜⎜⎜⎜⎜
⎝

3 4 7

2 1 0

⎞
⎟⎟⎟⎟⎟
⎠
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Exemple 2.15 On considère les deux matrices

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 a2

b1 b2

c1 c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

et B =

⎛
⎜⎜⎜⎜⎜
⎝

d1 d2 d3 d4

e1 e2 e3 e4

⎞
⎟⎟⎟⎟⎟
⎠

Calculer A ⋅ I2, I3 ⋅A,B ⋅04,m,0n,2 ⋅B (avec m,n ∈ N∗). Que remarque-t-on?

On a

A ⋅ I2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 a2

b1 b2

c1 c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

1 0

0 1

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 a2

b1 b2

c1 c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= A

On a

I3 ⋅A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 a2

b1 b2

c1 c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 a2

b1 b2

c1 c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= A

On a

B ⋅04,m =

⎛
⎜⎜⎜⎜⎜
⎝

d1 d2 d3 d4

e1 e2 e3 e4

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 . . . 0

0 . . . 0

0 . . . 0

0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

0 . . . 0

0 . . . 0

⎞
⎟⎟⎟⎟⎟
⎠
= 04,m

On a

0n,2 ⋅B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0

⋮ ⋮

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

d1 d2 d3 d4

e1 e2 e3 e4

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0

⋮ ⋮ ⋮ ⋮

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0n,2

De manière générale, comme l’illustre l’exemple précédent, on peut en déduire les règles de calculs
suivantes concernant le produit par la matrice identité ou par la matrice nulle.

Proposition 2.16 — Règles de calcul avec les matrices identités/nulles. Soit A ∈Mn,p(R). On a

• A ⋅ Ip = In ⋅A = A • A ⋅0p,q = 0n,q et 0m,n ⋅A = 0m,p

! L’égalité AB = 0 n’implique pas que A = 0 ou B = 0. Ainsi, si on obtient que AB = 0, on ne conclura pas
que A = 0 ou B = 0. Et on ne simplifiera pas par A dans une égalité du type AB = AC sans hypothèse
supplémentaire sur A. Par exemple, si on considère les deux matrices

A =

⎛
⎜⎜⎜⎜⎜
⎝

0 0

0 1

⎞
⎟⎟⎟⎟⎟
⎠

et B =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 82

0 0 0

⎞
⎟⎟⎟⎟⎟
⎠
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alors, on a

AB =

⎛
⎜⎜⎜⎜⎜
⎝

0 0

0 1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

1 0 82

0 0 0

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟
⎠
= 02,3

tandis que A ≠ 0 et B ≠ 0.

Exemple 2.17 — Calcul littéral matriciel. Soient A,B ∈Mn,p(R). Développer les deux premières expressions,
factoriser à droite par A la troisième et factoriser à gauche par A la dernière.

(A+B) ⋅ (A−B) = A ⋅A−A ⋅B+B ⋅A−B ⋅B

(2A+B) ⋅ (3A) = 6A ⋅A+3B ⋅A

(A ⋅A+BA) = (A+B) ⋅A

(A ⋅A+AB+A) = A ⋅ (A+B+ In)

2.5 Analogies entre calcul réel et calcul matriciel
Soient n, p,q,m ∈ N∗. Soient A ∈Mn,p(R) et x ∈ R.

Monde des matrices Monde des réels

A+0n,p = 0n,p +A x+0 = 0+ x = 0

A ⋅0p,q = 0p,q et 0m,n ⋅A = 0m,p x×0 = 0× x = 0

0n,p 0

A ⋅ Ip = In ⋅A = A x×1 = 1× x

In 1

! La grande différence entre le monde des matrices et le monde des réels et la non commutativité du
produit matriciel, c’est-à-dire que l’ordre des matrices dans un produit est crucial. Par exemple,

⎛
⎜⎜⎜⎜⎜
⎝

1 2

3 4

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

1 1

0 1

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

1 3

3 7

⎞
⎟⎟⎟⎟⎟
⎠

alors que
⎛
⎜⎜⎜⎜⎜
⎝

1 1

0 1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

1 2

3 4

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

4 6

3 4

⎞
⎟⎟⎟⎟⎟
⎠
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2.6 Puissances d’une matrice carrée
Définition 2.18 Soit A ∈Mn(R).

• Par convention, on a A0
= In.

• Pour tout p ∈ N∗, la puissance p-ième de de la matrice A, notée Ap est définie par

Ap
= A×A×⋯×AÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

p fois

.

Proposition 2.19 Soit A ∈Mn(R), (p,q) ∈ N2, on a

Ap+q
= Ap

⋅Aq
= Aq

⋅Ap et Apq
= (Ap)q

= (Aq)p

! En général, si A et B ne commutent pas,

(AB)p
≠ ApBp et (A+B)2

≠ A2
+2AB+B2

En particulier, dans le monde des matrices, en général, les identités remarquables sont fausses.

Exemple 2.20 On considère la matrice A ∈M3(R) donnée par,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1

0 0 3

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Calculer, pour tout p ∈ N, Ap.

ø Gestes Invisibles/Automatismes. On demande une formule pour n’importe quelle puissance
de A. On commence par calculer les petites puissances de A. Puis on conjecture une formule
générale que l’on démontre par récurrence.

• Pour p = 0, on a A0
= I3.

• Pour p = 1, on a A1
= A.

• pour p = 2, on a

A2
= A ⋅A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1

0 0 3

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1

0 0 3

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 3

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

• pour p = 3, on a

A3
= A2

⋅A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 3

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1

0 0 3

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

• Donc, par récurrence, on montre que, pour tout p ∈ N, p ⩾ 3, Ap
= 03.
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Exemple 2.21 On considère la matrice A ∈M2(R) donnée par,

A =

⎛
⎜⎜⎜⎜⎜
⎝

1 1

0 1

⎞
⎟⎟⎟⎟⎟
⎠

Calculer, pour tout p ∈ N, Ap.

ø Gestes Invisibles/Automatismes. On demande une formule pour n’importe quelle puissance
de A. On commence par calculer les petites puissances de A. Puis on conjecture une formule
générale que l’on démontre par récurrence.

• Pour p = 0, on a A0
= I2.

• Pour p = 1, on a A1
= A.

• pour p = 2, on a

A2
= A ⋅A =

⎛
⎜⎜⎜⎜⎜
⎝

1 1

0 1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

1 1

0 1

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

1 2

0 1

⎞
⎟⎟⎟⎟⎟
⎠

• pour p = 3, on a

A3
= A2

⋅A =

⎛
⎜⎜⎜⎜⎜
⎝

1 2

0 1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

1 1

0 1

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

1 3

0 1

⎞
⎟⎟⎟⎟⎟
⎠

Démontrons par récurrence, que pour tout p ∈ N, p ⩾ 3, Ap
=

⎛
⎜⎜⎜⎜⎜
⎝

1 p

0 1

⎞
⎟⎟⎟⎟⎟
⎠

.

Pour cela, notons, pour tout p ∈ N,

P(p) ∶ « Ap
=

⎛
⎜⎜⎜⎜⎜
⎝

1 p

0 1

⎞
⎟⎟⎟⎟⎟
⎠

»

− Initialisation. Montrons que P(0) est vraie. Comme A0
= I2, P(0) est vraie.

− Hérédité. Soit p ∈ N. Supposons que la propriété P(p) soit vraie. Montrons que la
propriété P(p+1) est vraie. On a

Ap+1
= Ap

⋅A

=

⎛
⎜⎜⎜⎜⎜
⎝

1 p

0 1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

1 1

0 1

⎞
⎟⎟⎟⎟⎟
⎠

par hypothèse de récurrence

=

⎛
⎜⎜⎜⎜⎜
⎝

1 p+1

0 1

⎞
⎟⎟⎟⎟⎟
⎠

Donc P(p+1) est vraie.
− Conclusion. Donc, par principe de récurrence, que pour tout p ∈ N, la propriété P(p) est

vraie.
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2.7 Transposition
Définition 2.22 — Transposition d’une matrice. Pour A = (ai, j) ∈Mn,p(R), on définit la transposée de la
matrice A, notée AT

∈Mp,n(R), comme la matrice dont, pour tout i ∈ J1, pK et j ∈ J1,nK, le coefficient
d’indice (i, j) est donné par a j,i. De manière informelle, effectuer la transposée revient à faire “la symétrie
par rapport à la diagonale”.

Exemple 2.23

Pour A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4 3

0 5

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, AT
=

⎛
⎜⎜⎜⎜⎜
⎝

4 0 −1

3 5 1

⎞
⎟⎟⎟⎟⎟
⎠
.

Pour L = (1 2 3) , LT
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

2

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Pour B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 a2 a3

b1 b2 b3

c1 c2 c3

d1 d2 d3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, BT
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Proposition 2.24 Soient A et B deux matrices de Mn,p(R) et λ ∈ R. On a

•(AT )T
= A • (A+B)T

= AT
+BT

• (λ ⋅A)T
= λ ⋅AT

• (AB)T
= BT AT

Exemple 2.25 On considère les deux matrices A et B, données par,

A =

⎛
⎜⎜⎜⎜⎜
⎝

a1 b1 c1

a2 b2 c2

⎞
⎟⎟⎟⎟⎟
⎠

et B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

0

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

• D’une part, calculer AB, puis (AB)T .

AB =

⎛
⎜⎜⎜⎜⎜
⎝

a1 − c1

a2 − c2

⎞
⎟⎟⎟⎟⎟
⎠

et (AB)T
= (a1 − c1 a2 − c2)

• D’autre part, calculer AT , BT puis BT AT .

AT
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 a2

b1 b2

c1 c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, BT
= (1 0 −1) , et BT AT

= (a1 − c1 a2 − c2)
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Définition 2.26 — Matrice symétrique. Soit A = (ai, j) ∈ Mn(R) une matrice carrée. On dit que A est
symétrique lorsque AT

= A, c’est-à-dire, lorsque pour tout i ∈ J1,nK, pour tout j ∈ J1,nK, on a ai, j = a j,i.

Exemple 2.27 On considère les matrices

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 −4

2 7 0

−4 0 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

et B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 2 −4

−2 0 1

4 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Sont-elles des matrices symétriques?

On a

AT
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 −4

2 7 0

−4 0 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

et BT
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −2 4

2 0 −1

−4 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Donc A est une matrice symétrique mais B ne l’est pas.
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3 Matrices inversibles
3.1 Définition

Définition 3.1 Soit A ∈ Mn(R) une matrice carrée. La matrice A est dite inversible lorsqu’il existe
B ∈Mn(R) telle que AB = In ou BA = In.

Dans ce cas,
• la matrice B est unique,
• on a en fait AB = In et BA = In,
• B s’appelle la matrice inverse de A, on la note A−1.

Exemple 3.2 On considère la matrice

A =

⎛
⎜⎜⎜⎜⎜
⎝

2 1

1 1

⎞
⎟⎟⎟⎟⎟
⎠

Montrer que A est inversible.

Montrons que A est inversible, c’est-à-dire, trouvons une matrice M ∈M2(R) telle que AM = I2.
On cherche donc la matrice M sous la forme

M =

⎛
⎜⎜⎜⎜⎜
⎝

a b

c d

⎞
⎟⎟⎟⎟⎟
⎠
.

avec a,b,c,d des réels à déterminer. On a

I2 = AM =

⎛
⎜⎜⎜⎜⎜
⎝

2a+ c 2b+d

a+ c b+d

⎞
⎟⎟⎟⎟⎟
⎠

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a+ c = 1

2b+d = 0

a+ c = 0

b+d = 1

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = 1

b = −1

c = −1

d = 2

Finalement,

∃M =

⎛
⎜⎜⎜⎜⎜
⎝

1 −1

−1 2

⎞
⎟⎟⎟⎟⎟
⎠
∈M2(R), AM = I2.

Donc la matrice A est inversible.

« Vérification.

AM =

⎛
⎜⎜⎜⎜⎜
⎝

2 1

1 1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

1 −1

−1 2

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

1 0

0 1

⎞
⎟⎟⎟⎟⎟
⎠
= I2 ✓

MA =

⎛
⎜⎜⎜⎜⎜
⎝

1 −1

−1 2

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

2 1

1 1

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

1 0

0 1

⎞
⎟⎟⎟⎟⎟
⎠
= I2 ✓
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Exemple 3.3 On considère la matrice

A =

⎛
⎜⎜⎜⎜⎜
⎝

2 2

1 1

⎞
⎟⎟⎟⎟⎟
⎠

Montrons, par l’absurde, que A n’est inversible pas.

Supposons par l’absurde que A est inversible, c’est-à-dire qu’il existe M ∈M2(R) telle que
AM = I2. Notons M sous la forme

M =

⎛
⎜⎜⎜⎜⎜
⎝

a b

c d

⎞
⎟⎟⎟⎟⎟
⎠
.

avec a,b,c,d des réels. Comme M est l’inverse de A, on a

I2 = AM =

⎛
⎜⎜⎜⎜⎜
⎝

2a+2c 2b+2d

a+ c b+d

⎞
⎟⎟⎟⎟⎟
⎠

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a+2c = 1

2b+2d = 0

a+ c = 0

b+d = 1

En particulier, on obtient b+d = 1 = 0, ce qui est faux. Donc la matrice A n’est pas inversible.

Exemple 3.4 Soit A ∈Mn(R) telle que

A3
−3A−2In = 0n.

Montrons que A est inversible, c’est-à-dire cherchons une matrice M ∈Mn(R) telle que AM = In.

On a

A3
−3A−2In = 0n ⇔ A3

−3A= 2In ⇔
1
2 (A3

−3A)= In ⇔ A×
1
2 (A2

−3In)= In

Donc A est inversible et son inverse est donné par A−1
=

1
2 (A2 −3In).

Exemple 3.5 Soit A ∈ Mn(R), A ≠ 3I3, qui vérifie A2
= 3A. Montrons, par l’absurde, que A n’est pas

inversible.

Supposons par l’absurde que A est inversible, c’est-à-dire qu’il existe une matrice A−1
∈Mn(R)

telle que AA−1
= A−1A = In. Alors, on a

A2
= 3A d’après l’énoncé

donc A ⋅A = 3 ⋅A

donc A ⋅A ⋅A−1
= 3A ⋅A−1 en multipliant à droite par A−1

donc A ⋅ In = 3 ⋅ In car A ⋅A−1
= In

donc A = 3 ⋅ In

Or, la dernière égalité est absurde. Donc, cela démontre que la matrice A n’est pas inversible.
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Proposition 3.6 Soient A et B dans Mn(R), deux matrices inversibles.
1. Alors, A−1 est inversible et

(A−1)−1
= A

2. Alors, AB est inversible et
(AB)−1

= B−1A−1

3. Alors AT est inversible et
(AT )−1

= (A−1)T

Démonstration. Soient A et B dans Mn(R), deux matrices inversibles.
1. On a

A−1
⋅A = In

Donc la matrice A−1 est inversible et son inverse vaut A.
2. On a

(AB) ⋅ (B−1A−1) = AInA−1
= AA−1

= In

Donc la matrice AB est inversible et son inverse vaut B−1A−1.
3. On a

AT (A−1)T
= (A−1A)T

= IT
n = In

Donc AT inversible, d’inverse (A−1)T .
■

! Attention aux simplifications abusives. De manière générale, AB = AC n’implique par B =C. C’est vrai
seulement si A est inversible. En effet, si A est inversible, on a

A−1AB = A−1AC donc InB = InC donc B =C

De la même manière, de manière générale BA =CA implique B =C seulement si A est inversible.

3.2 Cas particuliers à connaître

Proposition 3.7 — Matrice nulle et identité. Soit n ∈ N∗.
1. La matrice identité In est inversible et (In)−1

= In.
2. La matrice nulle 0n n’est pas inversible.

Proposition 3.8 — Cas des matrices 2×2. Soient a,b,c,d des réels et

A =

⎛
⎜⎜⎜⎜⎜
⎝

a c

b d

⎞
⎟⎟⎟⎟⎟
⎠
∈M2(R).

On note, det(A), le déterminant de la matrice A, donné par

det(A) = ad −bc.

Alors,
A inversible ⇔ det(A) ≠ 0.

Et dans ce cas,

A−1
=

1
det(A)

⎛
⎜⎜⎜⎜⎜
⎝

d −c

−b a

⎞
⎟⎟⎟⎟⎟
⎠
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Exemple 3.9 On considère la matrice

A =

⎛
⎜⎜⎜⎜⎜
⎝

2 1

3 4

⎞
⎟⎟⎟⎟⎟
⎠

Montrons que A est inversible.

On a
det(A) = 2×4−3×1 = 5 ≠ 0.

Donc A est inversible et son inverse est donné par

A−1
=

1
5

⎛
⎜⎜⎜⎜⎜
⎝

4 −1

−3 2

⎞
⎟⎟⎟⎟⎟
⎠

« Vérification. ✓

Exemple 3.10 On considère la matrice

B =

⎛
⎜⎜⎜⎜⎜
⎝

2 1

4 2

⎞
⎟⎟⎟⎟⎟
⎠

Montrons que B n’est pas inversible.

On a
det(B) = 2×2−4×1 = 0.

Donc B n’est pas inversible.

Exemple 3.11 — Adapté d’Ecricome 2018. Pour quelle·s valeur·s de λ ∈R la matrice A−λ I2 suivante est telle
inversible, où la matrice A est donnée par

A =

⎛
⎜⎜⎜⎜⎜
⎝

1+
√

5 −1

−1 1

⎞
⎟⎟⎟⎟⎟
⎠

Soit λ ∈ R. Tout d’abord, la matrice A−λ I2 est donnée par

A−λ I2 =

⎛
⎜⎜⎜⎜⎜
⎝

1+
√

5−λ −1

−1 1−λ

⎞
⎟⎟⎟⎟⎟
⎠

Puis, la matrice A−λ I2 étant une matrice 2×2, on a

A−λ I2 est inversible ⇔ det(A−λ I2) ≠ 0

⇔ (1+
√

5−λ)(1−λ)−1 ≠ 0

⇔ λ
2
− (2+

√
5)λ +

√
5 ≠ 0

⇔ λ ∈ R\{−1+
√

5
2 ,

5+
√

5
2 }

en résolvant l’équation de second degré qui apparaît.
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Proposition 3.12 — Cas des matrices diagonales. Soit D ∈Mn(R) une matrice diagonale, donnée par

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 0 ⋯ ⋯ 0

0 a2 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 0

0 ⋯ ⋯ 0 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Alors
D est inversible ⇔ ∀i ∈ J1,nK,ai ≠ 0.

Dans ce cas,

D−1
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
a1

0 ⋯ ⋯ 0

0 1
a2

⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 0

0 ⋯ ⋯ 0 1
an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Exemple 3.13 On considère la matrice D1, donnée par

D1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 0 0

0 4 0

0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Montrer que D1 est inversible et donner son inverse.

D1 est une matrice diagonale, et tous ses coefficients diagonaux sont non nuls, donc elle est
inversible et son inverse est donné par

D−1
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2 0 0

0 1
4 0

0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

« Vérification.

D1D−1
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 0 0

0 4 0

0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2 0 0

0 1
4 0

0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= I3 ✓
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Exemple 3.14 On considère la matrice D2, donnée par

D2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

5 0 0

0 7 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Montrer que D2 n’est pas inversible.

D2 est une matrice diagonale et un de ses coefficients diagonaux est nul, donc la matrice n’est
pas inversible.

Proposition 3.15 — Cas des matrices triangulaires. Une matrice triangulaire est inversible si et seulement si
tous ses coefficients diagonaux sont non nuls.

Exemple 3.16 On considère la matrice T1, donnée par

T1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 5 0

0 4 7

0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Montrer que T1 est inversible.

T1 est une matrice triangulaire supérieure, et tous ses coefficients diagonaux sont non nuls, donc
elle est inversible.

Exemple 3.17 On considère la matrice T2, donnée par

T2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

5 0 0

1 0 0

2 1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Montrer que T2 n’est pas inversible.

T2 est une matrice triangulaire inférieure et un de ses coefficients diagonaux est nul, donc la
matrice n’est pas inversible.

! L’argument « tous les coefficients diagonaux sont non nuls donc la matrice est inversible » n’est valable
que pour les matrices diagonales ou triangulaires. Par exemple, la matrice

A =

⎛
⎜⎜⎜⎜⎜
⎝

1 1

1 1

⎞
⎟⎟⎟⎟⎟
⎠

a tous ses coefficients diagonaux non nuls pourtant elle n’est pas inversible car detA = 0.
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4 Lien entre systèmes et matrices
4.1 Écriture matricielle d’un système

On a
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1,1x1 + . . . a1,pxp = b1

⋮ ⋮ ⋮

an,1x1 + . . . an,pxp = bn

⟺ AX = B,

avec
• la matrice A des coefficients du système, donnée par

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1,1 a1,2 . . . a1,p

a2,1 a2,2 . . . a2,p

⋮ ⋮ ⋮ ⋮

an,1 an,2 . . . an,p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

• la matrice colonne B du second membre, donné par

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b1

b2

⋮

bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

• la matrice colonne X des inconnues du système

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1

x2

⋮

xp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Exemple 4.1

{2x+ y = 2
x−3y = 5

⟺

⎛
⎜⎜⎜⎜⎜
⎝

2 1

1 −3

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

x

y

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

2

5

⎞
⎟⎟⎟⎟⎟
⎠

En effet,
⎛
⎜⎜⎜⎜⎜
⎝

2 1

1 −3

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

x

y

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

2

5

⎞
⎟⎟⎟⎟⎟
⎠

⟺

⎛
⎜⎜⎜⎜⎜
⎝

2x+ y

x−3y

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

2

5

⎞
⎟⎟⎟⎟⎟
⎠

⟺ {2x+ y = 2
x−3y = 5
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4.2 Application : calcul de l’inverse d’une matrice

Proposition 4.2 Soit A ∈Mn(R). On a

A est inversible ⟺ ∀B ∈Mn,1(R), l’équation AX = B admet une unique solution

Dans ce cas, la solution du système est
X = A−1B

et le système est appelé un système de Cramer.

! Cette proposition permet de
1. Calculer l’unique solution du système associé à AX = B, lorsque que l’on sait que A est inversible

et que l’on connaît son inverse ;
2. Montrer que A est inverse et calculer son inverse, en montrant que le système associé à AX = B

admet une unique solution ;
3. Montrer que A n’est pas inversible en montrant que le système associé à AX = B n’admet pas

qu’une unique solution.

Exemple 4.3 — Utilisation 1. On considère le système linéaire suivant

(S)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x − 2y + 3z = 1

−x + 2y − z = 2

3x − 10y + 2z = −3

1. Donner l’écriture matricielle de ce système.

On a (S)⇔ AX = B, avec

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −2 3

−1 2 −1

3 −10 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

2

−3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x

y

z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

2. Donner l’ensemble des solutions de ce système en admettant que A est inversible et que son inverse
est donné par

A−1
=

1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−6 −26 −4

−1 −5 −1

4 14 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Comme A est inversible, le système (S) se résout par équivalence de la manière suivante,

(S) ⇔ AX = B ⇔ X = A−1B

Ainsi, le système (S) admet une unique solution donnée par

X = A−1B =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−6 −26 −4

−1 −5 −1

4 14 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

2

−3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−23

−4

13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Exemple 4.4 — Utilisation 2. On considère la matrice A suivante

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1

1 1 0

1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Montrer que A est inversible et déterminer son inverse.

Soient

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a

b

c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈M3,1(R) et X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x

y

z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

On a

AX = B ⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1

1 1 0

1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x

y

z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a

b

c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y + z = a

x + y = b

x + y + z = c

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + y = b L2 ↔ L1

y + z = a

x + y + z = c

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + y = b

y + z = a

z = c−b L3 ← L3 −L1

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = −a+ c

y = a+b− c

z = −b+ c L3 ← L3 −L1

Donc, pour tout B ∈M3,1(R), l’équation AX = B admet une unique solution donnée par

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−a+ c

a+b− c

−b+ c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 0 1

1 1 −1

0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a

b

c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Donc A est inversible et son inverse est donné par

A−1
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 0 1

1 1 −1

0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

« Vérification.

AA−1
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1

1 1 0

1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 0 1

1 1 −1

0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= I3 ✓

Exemple 4.5 — Utilisation 3. On considère la matrice A suivante

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1

1 1 0

1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Montrons que A n’est pas inversible.

Pour montrer que A n’est pas inversible, on montre que l’équation AX = 03,1 admet une infinité
de solutions. On a

AX = 03,1 ⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1

1 1 0

1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x

y

z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y + z = 0

x + y = 0

x − z = 0

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + y = 0 L1 ↔ L2

y + z = 0

x − z = 0

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + y = 0

y + z = 0

− y − z = 0 L3 ← L3 −L1
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AX = 03,1 ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + y = 0

y + z = 0

0 = 0

⇔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x + y = 0

y + z = 0

⇔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x = −y

z = −y

Donc, l’équation AX = 03,1 admet une infinité de solutions, données par

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−y

y

−y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∣ y ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Donc la matrice A n’est pas inversible.

4.3 Application : étude de suites récurrentes linéaires
On s’intéresse à la suite (un)n∈N définie par

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u0 = 0,u1 = 1

pour tout n ∈ N, un+2 = 5un+1 −6un

Déterminer pour tout n ∈ N, l’expression de un en fonction de n.

La suite (un)n∈N est une suite récurrente linéaire d’ordre 2. Pour trouver son terme général, on
étudie son équation caractéristique qui est donnée par

r2
= 5r−6 ⇔ r2

−5r+6 = 0.

C’est une équation de second degré dont le discriminant est donné par ∆ = 1. Comme ∆ > 0,
l’équation caractéristique admet deux solutions réelles, données par r1 = 2 et r2 = 3. Ainsi, il
existe deux constantes A et B telles que

∀n ∈ N, un = A×2n
+B×3n

.

On détermine ensuite les valeurs de A et B grâce aux deux premiers termes de la suite.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u0 = 0

u1 = 1
⇔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A+B = 0

2A+3B = 1
⇔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A = −1

B = 1

Donc,
∀n ∈ N, un = −2n

+3n
.
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Le but de cet exercice est de prouver cette formule à l’aide des outils du calcul matriciel. La méthode est
détaillée ci-dessous.

1. (a) Déterminer une matrice A ∈M2(R) telle que,

∀n ∈ N,
⎛
⎜⎜⎜⎜⎜
⎝

un+1

un+2

⎞
⎟⎟⎟⎟⎟
⎠
= A

⎛
⎜⎜⎜⎜⎜
⎝

un

un+1

⎞
⎟⎟⎟⎟⎟
⎠

(b) En déduire que,

∀n ∈ N,
⎛
⎜⎜⎜⎜⎜
⎝

un

un+1

⎞
⎟⎟⎟⎟⎟
⎠
= An

⎛
⎜⎜⎜⎜⎜
⎝

0

1

⎞
⎟⎟⎟⎟⎟
⎠

2. On note

P =

⎛
⎜⎜⎜⎜⎜
⎝

1 1

2 3

⎞
⎟⎟⎟⎟⎟
⎠

(a) Montrer que P est inversible et calculer son inverse.
(b) Montrer que la matrice D = P−1AP est diagonale.
(c) En déduire, pour tout n ∈ N, l’expression de Dn.
(d) Montrer par récurrence, pour tout n ∈ N, An

= PDnP−1.
(e) En déduire, l’expression de An pour tout n ∈ N.
(f) En déduire les valeurs de un en fonction de n.
(g) Étudier la limite de la suite (un)n∈N.

1. (a) Soit n ∈ N. On a

⎛
⎜⎜⎜⎜⎜
⎝

un+1

un+2

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

un+1

5un+1 −6un

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

0 1

−6 5

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

un

un+1

⎞
⎟⎟⎟⎟⎟
⎠
= A

⎛
⎜⎜⎜⎜⎜
⎝

un

un+1

⎞
⎟⎟⎟⎟⎟
⎠
.

(b) Soit n ∈ N. On a

⎛
⎜⎜⎜⎜⎜
⎝

un

un+1

⎞
⎟⎟⎟⎟⎟
⎠
= A

⎛
⎜⎜⎜⎜⎜
⎝

un−1

un

⎞
⎟⎟⎟⎟⎟
⎠
= A2

⎛
⎜⎜⎜⎜⎜
⎝

un−2

un

⎞
⎟⎟⎟⎟⎟
⎠
=⋯ = An

⎛
⎜⎜⎜⎜⎜
⎝

u0

u1

⎞
⎟⎟⎟⎟⎟
⎠
= An

⎛
⎜⎜⎜⎜⎜
⎝

0

1

⎞
⎟⎟⎟⎟⎟
⎠

Le raisonnement avec les « ... » est à formaliser rigoureusement avec une récurrence.
2. On a det(P) = 1 ≠ 0. Donc P est inversible et son inverse est donné par

P−1
=

⎛
⎜⎜⎜⎜⎜
⎝

3 −1

−2 1

⎞
⎟⎟⎟⎟⎟
⎠

3. On a

D = P−1AP =

⎛
⎜⎜⎜⎜⎜
⎝

3 −1

−2 1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

0 1

−6 5

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

1 1

2 3

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

6 −2

−6 3

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

1 1

2 3

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

2 0

0 3

⎞
⎟⎟⎟⎟⎟
⎠
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4. On a alors, pour tout n ∈ N,

Dn
=

⎛
⎜⎜⎜⎜⎜
⎝

2n 0

0 3n

⎞
⎟⎟⎟⎟⎟
⎠

5. Notons, pour tout n ∈ N, P(n) : « An
= PDnP−1 ».

• Initialisation. Montrons que P(0) est vraie. Comme A0
= I2, et PD0P−1

= PI2P−1
=

PP−1
= I2, P(0) est vraie.

• Hérédité. Soit n ∈ N. Supposons que la propriété P(n) soit vraie. Montrons que la
propriété P(n+1) est vraie. Alors, en utilisant l’hypothèse de récurrence et le fait
que A = PDP−1, on a

An+1
= PDnP−1PDP−1

= PDnI2DP−1
= PDnDP−1

= PDn+1P−1

Donc P(n+1) est vraie.
• Conclusion. Donc, par principe de récurrence, que pour tout p ∈ N, An

= PDnP−1.
6. Soit n ∈ N. On a

An
= PDnP−1

=

⎛
⎜⎜⎜⎜⎜
⎝

1 1

2 3

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

2n 0

0 3n

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

3 −1

−2 1

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

2n 3n

2n+1 3n+1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

3 −1

−2 1

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

3 ⋅2n −2 ⋅3n −2n +3n

3 ⋅2n+1 −2 ⋅3n+1 −2n+1 +3n+1

⎞
⎟⎟⎟⎟⎟
⎠

7. Soit n ∈ N. On a

⎛
⎜⎜⎜⎜⎜
⎝

un

un+1

⎞
⎟⎟⎟⎟⎟
⎠
= An

⎛
⎜⎜⎜⎜⎜
⎝

0

1

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

3 ⋅2n −2 ⋅3n −2n +3n

3 ⋅2n+1 −2 ⋅3n+1 −2n+1 +3n+1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

0

1

⎞
⎟⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

3n −2n

3n+1 −2n+1

⎞
⎟⎟⎟⎟⎟
⎠

En particulier, on en déduit que,

∀n ∈ N, un = 3n
−2n

.

8. Soit n ∈ N. On a

un = 3n
−2n

= 3n (1−(2
3)

n

)→ +∞.
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