Feuilles d'exercices n°1

Exercice 1 (Distributivité). Montrer que pour toutes propositions P, Q, R, les propositions

• P et (Q ou R)

• (P et Q) ou (P et R)

sont équivalentes.

Р	Q	R	Q ou R	P et $(Q$ ou $R)$	$P ext{ et } Q$	$P ext{ et } R$	(P et Q) ou (P et R)
V	V	V	V	\mathbf{V}	V	V	\mathbf{V}
V	V	\mathbf{F}	V	\mathbf{V}	V	F	\mathbf{V}
V	F	V	V	\mathbf{V}	F	V	${f V}$
V	F	F	F	${f F}$	F	${ m F}$	${f F}$
F	V	V	V	${f F}$	F	\mathbf{F}	${f F}$
F	V	F	V	${f F}$	F	${ m F}$	${f F}$
F	\mathbf{F}	V	V	${f F}$	F	F	${f F}$
F	F	F	F	${f F}$	F	F	${f F}$

En va-t-il de même pour «P ou (Q et R)» et «(P ou Q) et (P ou R)»? La réponse est oui, ça marche pareil. Faire les colonnes : P, Q, R, Q et R, P ou Q et R, P ou Q, P ou Q ou Q, P ou Q, P ou Q, P ou Q, P ou Q ou Q

Exercice 5 (Traduire en quantificateurs - nombres réels ou entiers). On notera dans la suite n un entier relatif et x un réel quelconque. Traduire en propositions quantifiées les phrases suivantes :

- 1. x est un nombre rationnel $\exists p \in \mathbb{Z}, \exists q \in \mathbb{Z}^*, x = \frac{p}{q}$
- 2. n est un nombre premier $n \neq 1$ et $\forall p, q \in \mathbb{N}, n = pq \Rightarrow (p = 1 \text{ ou } q = 1)$
- 3. n est plus petit que tous les nombres réels au carré $\forall x \in \mathbb{R}, n \leq x^2$
- 4. x est compris entre deux entiers consécutifs $\exists n \in \mathbb{Z}, n \leq x < n+1$ (l'énoncé n'est pas clair sur le fait que les inégalités soient larges ou strictes)

Exercice 9 (Analyse-synthèse : exemples). Déterminer :

1. Les solutions de l'équation $\sqrt{2-x}=x$, d'inconnue $x\in\mathbb{R}$

Analyse: Soit x tel que $\sqrt{2-x}=x$. Alors en mettant l'équation au carré: $2-x=x^2$ et donc $x^2+x-2=0$.

On résout cette équation en x = -2 ou x = 1

Synthèse: pour x=-2, on obtient $\sqrt{2+2}=2\neq -2$. En revanche pour $x=1, \sqrt{1}=1$ et 1 est bien solution de l'équation.

Conclusion : la seule solution de l'équation est x = 1

2. Les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que $\forall x, y \in \mathbb{R}, f(x)f(y) - f(xy) = x + y$

Analyse: Soit f une fonction vérifiant cette propriété. Alors pour x = y = 0, on obtient: $f(0)^2 - f(0) = 0$. f(0) est une solution de l'équation $a^2 - a = 0$, c'est-à-dire: f(0) = 0 ou f(0) = 1

f(0) = 0. f(0) est une solution de l'équation $a^2 - a = 0$, c'est-à-dire : f(0) = 0 ou f(0) = 1Pour tout x, avec y = 0, on obtient : f(0)f(x) - f(0) = x. Si par l'absurde, f(0) = 0, on déduit que

pour tout réel x, x = 0, ce qui est une contradiction. Ainsi, f(0) = 1 et on résout en f(x) = x + 1Synthèse : Soit $f: x \mapsto x + 1$, soient x, y deux réels. Alors, f(x)f(y) - f(xy) = (x + 1)(y + 1) - (xy + 1) = (x + 1)(y + 1) = (x

 $\overline{xy+x+y}+1-xy-1=x+y.$ f est bien solution de l'équation.

<u>Conclusion</u>: La seule fonction solution de cette équation fonctionnelle est $x\mapsto x+1$

Exercice 10 (Analyse-synthèse). Montrer par analyse-synthèse que pour toute fonction f définie sur \mathbb{R} , il existe des fonctions g, h uniques vérifiant les trois propriétés :

- 1. $\forall x \in \mathbb{R}, f(x) = g(x) + h(x)$
- 2. $\forall x \in \mathbb{R}, g(-x) = g(x)$
- 3. $\forall x \in \mathbb{R}, h(-x) = -h(x)$

Soit f une fonction quelconque définie sur \mathbb{R}

Analyse : Soient g, h des fonctions vérifiant les trois propriétés. On a alors pour tout réel x:

$$\begin{cases} f(x) &= g(x) + h(x) \\ f(-x) &= g(-x) + h(-x) \end{cases}$$

On utilise les propriétés g(-x)=g(x) et h(-x)=-h(x) pour obtenir :

$$\begin{cases} f(x) &= g(x) + h(x) \\ f(-x) &= g(x) - h(x) \end{cases}$$

On résout ce système en : $g(x) = \frac{f(x) + f(-x)}{2}$ et $h(x) = \frac{f(x) - f(-x)}{2}$

Synthèse: Soient $g: x \mapsto \frac{f(x) + f(-x)}{2}$ et $h: x \mapsto \frac{f(x) - f(-x)}{2}$. Alors pour tout $x \in \mathbb{R}$,

1.
$$g(x) + h(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2} = \frac{f(x) + f(-x) + f(x) - f(-x)}{2} = f(x)$$

2.
$$g(-x) = \frac{f(-x)+f(x)}{2} = \frac{f(x)+f(-x)}{2} = g(x)$$

3.
$$h(-x) = \frac{f(-x) - f(-(-x))}{2} = -\frac{f(x) - f(-x)}{2} = -h(x)$$

q et h vérifient bien les trois propriétés demandées (q est paire, h est impaire, f = q + h)

Exercice 11. Montrer que pour trois propositions $A, B, C, (A \text{ ou } B) \Rightarrow C$ est équivalente à $(A \Rightarrow C)$ C) et $(B \Rightarrow C)$ »

A	В	С	A ou B	$(A \text{ ou } B) \Rightarrow C$	$(A \Rightarrow C)$	$(B \Rightarrow C)$	$(A \Rightarrow C)$ et $(B \Rightarrow C)$
V	V	V	V	\mathbf{V}	V	V	\mathbf{V}
V	V	F	V	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f F}$
V	\mathbf{F}	V	V	\mathbf{V}	V	V	${f V}$
V	\mathbf{F}	F	V	${f F}$	${ m F}$	V	${f F}$
F	V	V	V	\mathbf{V}	V	V	\mathbf{V}
F	V	F	V	${f F}$	V	${ m F}$	${f F}$
F	F	V	\mathbf{F}	\mathbf{V}	V	V	\mathbf{V}
F	F	F	\mathbf{F}	\mathbf{V}	V	V	V

Exercice 17 (Comparaison de suites). Démontrer que pour tout $n \in \mathbb{N}^*, 2^{n-1} \leq 1 \times \ldots \times n \leq n^n$ On rédigera pour plus de facilité deux récurrences séparées. Je mets ici les hérédités seulement, initialisations et conclusions à savoir rédiger.

<u>Hérédité 1</u>: Soit n tel que $2^{n-1} \le 1 \times ... \times n$

Alors, $2^n \le 2 \times 1 \times 2 \times ... \times n$. Si $n \ge 1$, alors $2 \le n+1$ et en multipliant par $1 \times 2 \times ... \times n$ qui est positif, on obtient:

$$2 \times 1 \times 2 \times \ldots \times n \le 1 \times 2 \times \ldots \times n \times (n+1)$$

Par transitivité, $2^n \le 1 \times ... \times n \times (n+1)$ et la récurrence est établie.

Hérédité 2 : Soit n tel que $1 \times 2 \times \ldots \times n \leq n^n$

Alors, $1 \times 2 \times \ldots \times n \times (n+1) \le n^n \times (n+1)$

Par ailleurs, $(n+1)^{n+1} = (n+1) \times (n+1)^n = (n+1)n^n \times \left(1 + \frac{1}{n}\right)^n \ge (n+1)n^n$. On conclut: $(n+1)^{n+1} \ge 1 \times 2 \times \ldots \times n \times (n+1)$ et la récurrence est établie.

Exercice 19. Montrer par récurrence forte que tout entier $n \ge 2$ est le produit de nombre(s) premier(s).

<u>Initialisation</u>: 2 est un nombre premier, il s'écrit bien comme un produit de nombres premiers.

Hérédité : Soit n tel que tout entier k inférieur à n soit le produit de nombres premiers.

Raisonnons par disjonction de cas pour montrer que n+1 est un produit de nombres premiers :

- Si n+1 est premier, alors n+1 s'écrit comme produit de nombres premiers (un seul facteur dans le produit)
- Si n+1 n'est pas premier, alors il existe p,q différents de 1 et de n+1 tels que n+1=pq. En particulier, $p \leq n$ et $q \leq n$. Alors, par hypothèse de récurrence, il existe des nombres premiers p_1, \ldots, p_r et q_1, \ldots, q_s tels que $p = p_1 p_2 \ldots p_r$ et $q = q_1 q_2 \ldots q_s$. Ainsi : $n+1 = p_1 p_2 \ldots p_r q_1 q_2 \ldots q_s$ qui est un produit de nombres premiers.

La récurrence est établie.

Conclusion : tout entier supérieur ou égal à 2 est un produit de nombres premiers.