Devoir surveillé n°du 16 novembre

Calculatrice interdite. Tous les résultats doivent être soigneusement justifiés, que l'énoncé le précise ou non. La présentation et la rédaction sont centrales dans l'appréciation d'une copie.

Сне	CK-LIST AVANT DE RENDRE LA COPIE :
	Copie tenue bras tendu : on voit les changements d'exercices et de questions. Pour ce faire, sauter une ligne entre les questions, encadrer les noms des exercices.
	Copie tenue bras tendu : copie aérée et lisible. Mettre une marge si il n'y en a pas sur la feuille, sauter des lignes si besoin, soigner la calligraphie (si besoin, écrire plus gros, sur les lignes, changer de stylo), éviter les longs paragraphes : aller à l'argument principal.
	Pages numérotées et rangées dans l'ordre.
	Exercices et questions numérotées.
	Résultats encadrés. À la règle, et sans surligneur.
	Phrases réponses, noms de théorèmes soulignés.
	Pas ou peu de ratures. Si c'est le cas, barrer proprement la question concernée, la séparer du reste du texte par deux lignes horizontales et recommencer proprement. Penser à utiliser un brouillon pour les calculs!
	Variables introduites par "soit" (quand c'est nécessaire). Par exemple, f ou (u_n) sont en général des variables introduites dans l'énoncé alors que x, n ne le sont pas. Les variables muettes utilisées dans une phrase quantifiée, les variables de sommation, n'ont pas besoin d'être introduites par "soit".
	Syntaxe et orthographe correctes. Faire en particulier attention aux mots "mathématiques" (noms de mathématiciens dans les théorèmes, termes techniques comme "asymptote", "dérivabilité")
	Modes de raisonnements / étapes indiquées. On ne ré-écrit pas l'énoncé, mais on précise "montrons maintenant que ()", "étudions la limite de ()" et "raisonnons par analyse-synthèse/l'absurde/récurrence/double implication"

Exercice 1 - Questions introductives

Toutes les questions suivantes sont indépendantes.

1. Résoudre les systèmes linéaires suivants :

(a)
$$\begin{cases} 2x + y - 5z = 1 \\ x - 2y + 3z = 2 \\ 4x - 3y + z = 5 \end{cases}$$

(b)
$$\begin{cases} 5x - 3y = \lambda x \\ 6x - 4y = \lambda y \end{cases}$$

2. Que fait la fonction Python suivante?

```
def fonction_mystere(1):
    a = 1[0]
    b = 1[0]
    n = len(1)
    for k in range(n):
        if 1[k] < a :
            a = 1[k]
        if 1[k] > b :
            b = 1[k]
    return a,b
```

- 3. **Vrai/Faux.** Soit (u_n) une suite.
 - (a) Si u_n converge, alors $|u_n|$ converge
 - (b) Si $|u_n|$ converge, alors u_n converge.
 - (c) Si u_n converge, alors $\lfloor u_n \rfloor$ converge
 - (d) Si $\lfloor u_n \rfloor$ converge, alors u_n converge

Exercice 2 - Une suite récurrente

On considère la fonction $f: x \mapsto \frac{x}{\ln(x)}$ de courbe représentative C_f et la suite $(u_n)_{n \in \mathbb{N}}$ définie par :

$$u_0 = 10$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$

On donne les valeurs approchées : $e \approx 2, 7$ et $f(10) \approx 4, 3$.

Partie I - Étude de f

- I. Déterminer l'ensemble de définition de la fonction f, noté D_f ainsi que les limites de f aux bornes de son ensemble de définition. Préciser les éventuelles asymptotes de la courbe C_f (horizontales, verticales, obliques).
- 2. Écrire une fonction Python f qui prend en argument un réel x et qui renvoie la valeur de f(x).
- 3. Voici un programme écrit en Python:

```
def mystere(M):
    x=3
    while f(x)<M:
        x=x+1
    return x</pre>
```

Que renvoie l'appel mystere (2)?

L'appel mystere (1000) renvoie 9119. Interpréter cette valeur.

- 4. Dresser le tableau de variations complet de f sur son ensemble de définition.
- 5. Étudier la position relative de C_f par rapport à la droite d'équation y = x.
- 6. Représenter l'allure de ${\cal C}_f$. On fera apparaı̂tre les éventuelles asymptotes à ${\cal C}_f$.

Partie II - Étude de (u_n)

- 1. Démontrer que la suite (u_n) est bien définie, décroissante et minorée par e.
- 2. Montrer: $\forall x \in [e, +\infty[, f'(x) = \frac{1}{4} \frac{1}{4} \left(1 \frac{2}{\ln(x)}\right)^2$.
- 3. En déduire : $\forall x \in [e, +\infty[, |f'(x)| \le \frac{1}{4}]$.
- 4. On admet que, pour tout $n \in \mathbb{N}$, $|u_{n+1} e| \le \frac{1}{4} |u_n e|$.

 Remarque: c'est un résultat dont le lien avec la question précédente sera étudié plus tard dans l'année.

 En déduire, par récurrence, que pour tout entier naturel n, $|u_n e| \le \frac{10}{4^n}$
- 5. En déduire la limite de la suite (u_n) .

Problème - développement en série de l'exponentielle

Dans tout l'exercice, on prendra pour convention : $\forall x \in \mathbb{R}, x^0 = 1$. L'objectif de l'exercice est d'établir :

$$\forall x \in \mathbb{R}, \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{k!} = e^x$$

Partie I - Programme Python.

I. Recopier et compléter le script Python suivant de sorte que, si $k \in \mathbb{N}$, alors l'exécution de factorielle (k) renvoie la valeur de k!.

```
def factorielle(k):
    res= ....
    for i in range(....):
        res = .....
    return res
```

- 2. Écrire une fonction Python qui prend en argument un réel x et un entier n et qui renvoie en sortie la liste composée des réels : $\frac{x^0}{0!}$, $\frac{x^1}{1!}$, $\frac{x^2}{2!}$, ..., $\frac{x^n}{n!}$.
- 3. En déduire une fonction Python qui prend en argument un réel x et un entier n et qui renvoie la valeur de $\sum_{k=0}^{n} \frac{x^k}{k!}$.
- 4. Recopier et compléter le programme Python suivant de sorte que, si $n \in \mathbb{N}$ et $x \in \mathbb{R}$, alors l'exécution de CB_somme (x,k) renvoie la valeur de $\sum_{k=0}^{n} \frac{x^k}{k!}$.

```
def CB_somme(x,n):
    facto= ....
S = 0
    for k in range(1, n+1):
        facto = k*facto
        S = ....
return S
```

5. Entre les programmes des questions 3 et 4, lequel préférer? Justifier votre réponse.

1. Partie II - Une croissance comparée.

L'objectif de cette partie est de démontrer le résultat suivant, utile en Partie III :

$$\forall x \in \mathbb{R}, \ \lim_{n \to +\infty} \frac{x^n}{n!} = 0$$

Soit $x \in \mathbb{R}$. On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par : $\forall n \in \mathbb{N}, \ u_n = \frac{x^n}{n!}$. Posons également $n_0 = \lfloor 2 |x| \rfloor$.

- I. Rappeler l'encadrement liant x et $\lfloor x \rfloor$.
- 2. Démontrer : $\forall n \in [n_0, +\infty[, |u_{n+1}| \le \frac{1}{2}|u_n|]$.
- 3. En déduire : $\forall n \ge n_0, \ 0 \le |u_n| \le \frac{1}{2^{n-n_0}} |u_{n_0}|$.
- 4. Montrer que si $|u_n| \xrightarrow[n \to +\infty]{} 0$, alors $u_n \xrightarrow[n \to +\infty]{} 0$
- 5. Conclure.

2. Partie III - Démonstration.

Posons, pour tout $n \in \mathbb{N}^*$, f_n et g_n les deux fonctions définies sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ f_n(x) = e^{-x} \sum_{k=0}^n \frac{x^k}{k!} \text{ et } g_n(x) = f_n(x) + \frac{x^n}{n!} e^{-x}$$

- I. Donner, pour tout $n \in \mathbb{N}^*$, $f_n(0)$ et $g_n(0)$.
- 2. Soit $n \in \mathbb{N}^*$. Justifier que les fonctions f_n et g_n sont dérivables sur \mathbb{R} et établir :

$$\forall x \in \mathbb{R}, \ f'_n(x) = -\frac{x^n}{n!}e^{-x} \text{ et } g'_n(x) = \frac{n-2x}{n!}x^{n-1}e^{-x}$$

- 3. Cas $x \ge 0$.
 - (a) Soit $n \in \mathbb{N}^*$. Déduire de la question précédente les tableaux de variations des fonctions f_n et g_n sur \mathbb{R}_+ .
 - (b) Soient $x \ge 0$ et $n \in \mathbb{N}^*$ tels que $n \ge 2x$. Démontrer que :

$$f_n(x) \le 1 \le g_n(x)$$

En déduire :

$$0 \le e^x - \sum_{k=0}^n \frac{x^k}{k!} \le \frac{x^n}{n!}$$

- (c) Conclure.
- 4. Cas x < 0.
 - (a) Soit $n \in \mathbb{N}^*$. Donner les tableaux de variations des fonctions f_{2n} et f_{2n+1} sur \mathbb{R}_-^* .
 - (b) Soient x < 0 et $n \in \mathbb{N}^*$. Démontrer que :

$$f_{2n+1}(x) \le 1 \le f_{2n}(x)$$

En déduire :

$$0 \le e^x - \sum_{k=0}^{2n+1} \frac{x^k}{k!} \le -\frac{x^{2n+1}}{(2n+1)!} \text{ et } \frac{x^{2n+1}}{(2n+1)!} \le e^x - \sum_{k=0}^{2n} \frac{x^k}{k!} \le 0$$

- (c) Soit x un réel négatif. On pose pour tout entier $n \in \mathbb{N}^*$, $u_n = f_n(x)$. Déduire de la question précédente que, pour tout x < 0, les suites (u_{2n}) et (u_{2n+1}) convergent toutes les deux vers 1.
- (d) Conclure.