Feuille d'exercices n°24

Exercice 5. Justifier la convergence puis calculer la valeur de l'intégrale suivante : $\int_0^{+\infty} t e^{-\sqrt{t}} dt$.

On posera $u = \sqrt{t}$, puis on pourra intégrer par parties.

Posons $u = \sqrt{t}$, i.e. $t = u^2$ et dt = 2udu. La fonction $\sqrt{\cdot}$ effectuant une bijection de \mathbb{R}^+ dans \mathbb{R}^+ , l'intégrale $\int_0^{+\infty} t e^{-t} dt$ converge si et seulement si l'intégrale $\int_0^{+\infty} u^2 e^{-u} 2u du$ converge.

Or, $u\mapsto 2u^3e^{-u}$ est une fonction continue sur $[0;+\infty[$ et en $+\infty,2u^5e^{-u}\to 0$, i.e. $2u^3e^{-u}=o\left(\frac{1}{u^2}\right)$

On en déduit que l'intégrale est convergente. Calculons maintenant sa valeur en intégrant par parties. Soit X > 0.

Soit X>0. $\int_0^X 2u^3e^{-u}du = \left[-2u^3e^{-u}\right]_0^X + \int_0^X 6u^2e^{-u}du \text{ donc quand } X\to +\infty:$

$$\int_0^{+\infty} 2u^3 e^{-u} du = \int_0^{+\infty} 6u^2 e^{-u} du$$

Recommençons : $\int_0^X 6u^2e^{-u}du = \left[-6u^2e^{-u}\right]_0^X + \int_0^X 12ue^{-u}du$ et quand $X\to +\infty$:

$$\int_0^{+\infty} 2u^3 e^{-u} du = \int_0^{+\infty} 12u e^{-u} du$$

Une dernière fois:

$$\int_0^{+\infty} 12ue^{-u}du = \int_0^{+\infty} 12e^{-u}du = 12 \times 1$$

On en déduit : $\int_0^{+\infty} t e^{-\sqrt{t}} dt = 12$

Exercice 6. 1. En effectuant le changement de variable défini par $u = \sqrt{t}$, déterminer une primitive de la fonction définie sur \mathbb{R}_+ par $f: t \mapsto \cos(\sqrt{t})$

Une primitive de f est $F: x \mapsto \int_0^x \cos(\sqrt{t}) dt$. Cherchons une expression explicite de F.

Soit $x \in \mathbb{R}$.

 $F(x) = \int_0^x \cos(\sqrt{t})dt = \int_0^{\sqrt{x}} \cos(x)2xdx$

En intégrant par parties

$$F(x) = \left[2t\sin(t)\right]_0^{\sqrt{x}} - \int_0^{\sqrt{x}} 2\sin(t)dt = 2\sqrt{x}\sin(\sqrt{x}) + 2\left[\cos(t)\right]_0^{\sqrt{x}} = 2\sqrt{x}\sin(\sqrt{x}) + 2\cos(\sqrt{x}) - 2\cos(\sqrt{x})$$

Une primitive de f est donc $x \mapsto 2\sqrt{x}\sin(\sqrt{x}) + 2\cos(\sqrt{x})$

- 2. Déterminer la convergence de l'intégrale $\int_0^{+\infty} f(t)dt$ et en cas de convergence déterminer sa valeur. Au vu de la question précédente, l'intégrale est divergente puisque F(x) n'a pas de limite quand $x \to +\infty$.
- 3. Mêmes questions pour $f: t \mapsto \frac{1}{1+e^t}$ De même, prenons un réel x et étudions :

$$\int_0^x f(t)dt = \int_0^x \frac{dt}{1+e^t} = \int_1^{e^x} \frac{du}{u(1+u)} = \int_1^{e^x} \left(\frac{1}{u} - \frac{1}{u+1}\right) du = \left[\ln(u) - \ln(u+1)\right]_1^{e^x} = \ln\left(\frac{e^x}{e^x+1}\right) + \ln(2)$$

Une primitive est donc: $x \mapsto \ln\left(\frac{e^x}{e^x+1}\right) + \ln(2) = -\ln(1+e^{-x}) + \ln(2)$

Or, quand $x \mapsto +\infty$, $e^{-x} \to 0$ et donc $-\ln(1+e^{-x}) + \ln(2) \to \ln(2)$

L'intégrale converge et vaut ln(2)

Exercice 9. On note $I = \int_0^{\frac{\pi}{2}} \ln(\sin(t))dt$; $J = \int_0^{\frac{\pi}{2}} \ln(\cos(t))dt$

- 1. Montrer que I et J sont des intégrales convergentes.
 - $t \mapsto \ln(\sin(t))$ est une fonction continue sur $]0; \frac{\pi}{2}]$. En 0, $\ln(\sin(t)) = \ln(t + o(t)) = \ln(t(1 + o(1))) = \ln(t) + \ln(1 + o(1)) \sim \ln(t)$ qui est une fonction intégrable autour de 0.

 $t\mapsto \ln(\cos(t))$ est continue sur $[0,\frac{\pi}{2}]$. Posons $u=\frac{\pi}{2}-t$, qui tend vers 0 quand t tend vers $\frac{\pi}{2}$. Alors,

$$\ln(\cos(t)) = \ln(\cos(\frac{\pi}{2} - u)) = \ln(\sin(u))$$

On est ramenés à la situation précédente et l'intégrale converge.

2. En utilisant le changement de variable $u = \frac{\pi}{2} - t$, montrer que I = J

$$I = \int_0^{\frac{\pi}{2}} \ln(\sin(t))dt$$

$$= \int_{\frac{\pi}{2}}^0 \ln\left(\sin\left(\frac{\pi}{2} - u\right)\right) (-du)$$

$$= \int_0^{\frac{\pi}{2}} \ln(\cos(u))du$$

$$= J$$

3. Montrer que pour tout $t \in \mathbb{R}$, $\sin(t)\cos(t) = \frac{1}{2}\sin(2t)$. En déduire : $I+J = -\frac{\pi}{2}\ln(2) + \int_0^{\frac{\pi}{2}}\ln(\sin(2t))dt$ Soit $t \in \mathbb{R}$. En utilisant les formules d'addition en trigonométrie :

$$\sin(2t) = \sin(t+t) = \sin(t)\cos(t) + \sin(t)\cos(t) = 2\sin(t)\cos(t)$$

Il suffit ensuite de diviser l'égalité par 2.

On en déduit :

$$\begin{split} I+J&=\int_0^{\frac{\pi}{2}}\ln(\sin(t))dt+\int_0^{\frac{\pi}{2}}\ln(\cos(t))dt\\ &=\int_0^{\frac{\pi}{2}}\left(\ln(\sin(t))+\ln(\cos(t))\,dt\text{ par linéarité}\\ &=\int_0^{\frac{\pi}{2}}\ln(\sin(t)\cos(t))dt\\ &=\int_0^{\frac{\pi}{2}}\ln\left(\frac{1}{2}\sin(2t)\right)dt\\ &=\int_0^{\frac{\pi}{2}}\ln(\sin(2t))-\ln(2)dt\\ &=\int_0^{\frac{\pi}{2}}\ln(\sin(2t))dt-\frac{\pi}{2}\ln(2)\text{ par linéarité}. \end{split}$$

4. Montrer : $2I = -\frac{\pi}{2}\ln(2) + I$ puis conclure avec la valeur de I. D'après les questions précédentes, $2I = I + J = -\frac{\pi}{2}\ln(2) + \int_0^{\frac{\pi}{2}}\ln(\sin(2t))dt$ Il suffit donc de montrer : $\int_0^{\frac{\pi}{2}}\ln(\sin(2t))dt = I$. Posons donc le changement de variable : u = 2t.

$$\begin{split} \int_0^{\frac{\pi}{2}} \ln(\sin(2t))dt &= \int_0^{\pi} \ln(\sin(u)) \times \frac{du}{2} \\ &= \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln(\sin(u))du + \frac{1}{2} \int_{\frac{\pi}{2}}^{\pi} \ln(\sin(u))du \text{ par relation de Chasles} \\ &= \frac{1}{2}I + \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln(\sin(t + \frac{\pi}{2}))dt \text{ en posant } u = \frac{\pi}{2} + t \\ &= \frac{1}{2}I + \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln(\cos(t))dt \\ &= \frac{1}{2}(I + J) \\ &= I \end{split}$$

On en déduit l'égalité demandée puis : $\boxed{I=-\frac{\pi}{2}\ln(2)}$

Exercice 10 (Un résultat théorique : lemme de Riemann-Lebesgue). Soit $f:[0;+\infty[\to\mathbb{R}])$ une fonction de classe \mathcal{C}^1 intégrable.

1. En intégrant par parties, montrer que pour tout $A>0, \int_0^A f(t)\cos(xt)dt$ tend vers 0 lorsque $x\to +\infty$

Puisque f est supposée de classe C^1 sur \mathbb{R}_+ , on peut intégrer par parties :

$$\int_0^A f(t)\cos(xt)dt = \left[\frac{1}{x}f(t)\sin(xt)\right]_0^A - \int_0^A \frac{1}{x}f'(t)\sin(xt)dt = \frac{1}{x}f(A)\sin(Ax) - \int_0^A \frac{1}{x}f'(t)\sin(xt)dt$$

Puisque la fonction sin est bornée, $\frac{1}{x}f(A)\sin(Ax) \xrightarrow[x \to +\infty]{} 0$

Par ailleurs,

$$\left| \int_0^A \frac{1}{x} f'(t) \sin(xt) dt \right| \le \frac{1}{x} \int_0^A |f'(t)| dt$$

Puisque $\int_0^A |f'(t)| dt$ est un nombre (ne dépend pas de x), $\frac{1}{x} \int_0^A |f'(t)| dt$ tend aussi vers 0 et donc :

$$\int_0^A f(t)\cos(xt)dt \xrightarrow[x \to +\infty]{} 0$$

2. En déduire que $\int_0^{+\infty} f(t) \cos(xt) dt$ tend vers 0 lorsque x tend vers $+\infty$.

On pourra revenir à la définition de la limite avec un ε et trouver un A tel que $\int_A^{+\infty} |f(t)| dt < \varepsilon$

Par définition de la limite, il existe un réel x_0 tel que pour tout $x \ge x_0$, $\left| \int_0^A f(t) \cos(xt) dt \right| \le \varepsilon$

Par ailleurs, puisque $\int_0^A |f(t)|dt \xrightarrow[A \to \infty]{} \int_0^{+\infty} |f(t)|dt$, il existe un A_0 tel que pour tout $A \ge A_0$,

 $\int_{A}^{+\infty} |f(t)| dt \leq \varepsilon. \text{ Soit donc } A \geq A_0.$ Par relation de Chasles, pour $x \geq x_0$,

$$\int_0^{+\infty} f(t)\cos(xt)dt = \int_0^A f(t)\cos(xt)dt + \int_A^{+\infty} f(t)\cos(xt)dt$$

Par inégalité triangulaire,

$$\left| \int_0^{+\infty} f(t) \cos(xt) dt \right| \le \left| \int_0^A f(t) \cos(xt) dt \right| + \int_A^{+\infty} |f(t)| dt \le 2\varepsilon$$

 2ε étant aussi arbitraire que ε , on en déduit que $\int_0^{+\infty} f(t) \cos(xt) dt \xrightarrow[x \to +\infty]{} 0$

Exercice 11 (Une intégrale convergente mais pas absolument convergente : l'intégrale de Dirichlet). L'objectif de cet exercice est de montrer que l'intégrale $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ est convergente mais pas absolument convergente. La fonction $t \mapsto \frac{\sin(t)}{t}$, appelée **sinus cardinal**, est continue sur $]0; +\infty[$, étudions donc son comportement aux bornes de \mathbb{R}_+ .

- 1. Étude sur]0;1]. Justifier que l'intégrale $\int_0^1 \frac{\sin(t)}{t} dt$ converge. En 0, $\frac{\sin(t)}{t} \sim 1$, l'intégrale est faussement impropre
- 2. Étude sur $[1; +\infty[$ Posons $x \ge 1$ et étudions $F(x) = \int_1^x \frac{\sin(t)}{t} dt$
 - (a) Montrer: $F(x) = -\frac{\cos(x)}{x} + \cos(1) + \int_1^x \frac{\cos(t)}{t^2} dt$ En intégrant par parties, on obtient : $F(x) = \left[-\frac{\cos(t)}{t} \right]_1^x + \int_1^x \frac{\cos(t)}{t^2} dt = -\frac{\cos(x)}{x} + \cos(1) + \frac{\cos(x)}{x} + \frac{\cos(x$
 - (b) En déduire que F converge quand x tend vers $+\infty$ puis que $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ est une intégrale

Puisque la fonciton cos est bornée, $\frac{\cos(x)}{x} \xrightarrow[x \to +\infty]{} 0$. Par ailleurs, $\left|\frac{\cos(t)}{t^2}\right| \le \frac{1}{x^2}$ et donc l'intégrale $\int_1^{+\infty} \frac{\cos(t)}{t^2}$ est absolument convergente. On en déduit que $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ est une intégrale

3. Non intégrabilité.

(a) Soit $n \in \mathbb{N}$ et $t \in [(n-1)\pi; n\pi]$. Justifier :

$$\frac{|\sin(t)|}{t} \ge \frac{|\sin(t)|}{n\pi}$$

Par décroissance de la fonction inverse, $\frac{1}{t} \geq \frac{1}{n\pi}$ et on multiplie ensuite par un réel positif.

(b) En déduire : $\int_{(n-1)\pi}^{n\pi} \frac{|\sin(t)|}{t} dt \ge \frac{2}{n\pi}$ Par croissance de l'intégrale,

$$\int_{(n-1)\pi}^{n\pi} \frac{|\sin(t)|}{t} dt \ge \int_{(n-1)\pi}^{n\pi} \frac{|\sin(t)|}{n\pi} dt = \frac{1}{n\pi} \int_{(n-1)\pi}^{n\pi} |\sin(t)| dt$$

Par π -périodicité de la fonction $t\mapsto |\sin(t)|,\; \int_{(n-1)\pi}^{n\pi}|\sin(t)|dt=\int_0^\pi|\sin(t)|dt=\int_0^\pi\sin(t)dt=\int_0^\pi\sin(t)dt$

 $\begin{aligned} &[-\cos(t)]_0^\pi = 2\\ &\text{On obtient donc } : &\int_{(n-1)\pi}^{n\pi} \frac{|\sin(t)|}{t} dt \geq \frac{2}{n\pi} \end{aligned}$

(c) En utilisant la série de terme général $\frac{2}{n\pi}$, justifier que l'intégrale $\int_0^{+\infty} \frac{|\sin(t)|}{t} dt$ diverge. Soit $x \in \mathbb{R}$. Posons $n = \lfloor \frac{x}{\pi} \rfloor$

$$\int_0^x \frac{|\sin(t)|}{t} dt = \sum_{k=1}^n \int_{(k-1)\pi}^{k\pi} \frac{|\sin(t)|}{t} dt + \int_{n\pi}^x \frac{|\sin(t)|}{t} dt \ge \sum_{k=1}^n \frac{2}{k\pi} \xrightarrow[n \to +\infty]{} + \infty$$

En effet, on reconnaît une somme partielle de la série harmonique.

Bibmath un exercice permettant de déterminer la valeur de $\int_0^{+\infty} \frac{\sin(t)}{t} dt$