Feuille d'exercices nř6

Exercice 6 (Fonction réciproque - courbe). Soit $f: \mathbb{R} \setminus \{\frac{1}{3}\} \longrightarrow \mathbb{R}^*$ $x \longmapsto \frac{2}{3x-1}$

1. Étudier les variations et les limites de f aux bornes de son ensemble de définition

f est dérivable : $\forall x \neq \frac{1}{3}, f'(x) = \frac{-2}{(3x-1)^2} < 0$

Ainsi, f est décroissante sur] $-\infty$; $\frac{1}{3}$ [et décroissante sur] $\frac{1}{3}$; $+\infty$ [. On a le tableau de variations :

x	$-\infty$	$\frac{1}{3}$ $+\infty$
f'(x)	_	_
f(x)	0	+∞0

- 2. Tracer lallure de la courbe de f dans un repère orthonormé Il faut juste que ça ressemble à la courbe de la fonction inverse, avec une asymptote verticale en $\frac{1}{3}$
- 3. Montrer que f est bijective. Sur $]-\infty; \frac{1}{3}[$, f est continue et strictement décroissante donc $f(]-\infty; \frac{1}{3}[)=\mathbb{R}_{-}^{*}$ et sur $]\frac{1}{3};+\infty[$, f est continue et strictement donc $f(]\frac{1}{3};+\infty[)=\mathbb{R}_{+}^{*}$. On en déduit que tous les réels différents de 0 ont un et un seul antécédent, d'où : f est bijective de $\mathbb{R}\setminus\{\frac{1}{3}\}$ dans \mathbb{R}^{*} .
- 4. Par le calcul, donner une expression de f^{-1} Soit $y \in \mathbb{R}^*$.

$$y = f(x) \iff y = \frac{2}{3x - 1}$$
$$\iff (3x - 1)y = 2$$
$$\iff 3yx = 2 + y$$
$$\iff x = \frac{2 + y}{3y} = \frac{1}{3} + \frac{2}{y}$$

Ainsi pour tout $y \in \mathbb{R}^*, f^{-1}(y) = \frac{2}{y} + \frac{1}{3}$

- 5. Tracer de même lallure de la courbe de f^{-1} dans le même repère Il faut de même une courbe qui ait l'allure de la fonction inverse ($\times 2$ donc ńdilatéeż verticalement) et ńdécaléeż de $\frac{1}{3}$ vers le haut
- 6. Tracer la droite déquation y = x et vérifier (à lil nu) que les deux courbes sont bien symétriques lune de lautre par rapport à cette droite.

Exercice 8. On considère la fonction f définie par $f(x) = -2\frac{xe^x - 1}{e^x - 1}$.

- 1. Déterminer son ensemble de définition. f est définie pour tout x tel que $e^x 1 \neq 0$, i.e. $x \neq 0$: l'ensemble de définition de f est \mathbb{R}^*
- 2. Étudier le signe de $e^x x$. Posons $g: x \mapsto e^x - x$ une application dérivable sur \mathbb{R} . Pour tout réel $x, g'(x) = e^x - 1$ donc g est croissante sur \mathbb{R}_+ et décroissante sur $\mathbb{R}_-: g$ admet un minimum en 0, égal à $g(0) = e^0 - 0 = 1$. Ainsi, g est positive sur $\mathbb{R}: \forall x \in \mathbb{R}, e^x - x \geq 0$
- 3. En déduire les variations de f.

f est dérivable sur son ensemble de définition avec pour tout $x \neq 0$:

$$f'(x) = -2\frac{(e^x + xe^x)(e^x - 1) - e^x(xe^x - 1)}{(e^x - 1)^2}$$
$$= -2\frac{e^{2x} + xe^{2x} - e^x - xe^x - xe^{2x} + e^x}{(e^x - 1)^2}$$
$$= -2\frac{e^x(e^x - x)}{(e^x - 1)^2}$$

Or, -2 < 0 et pour tout $x \neq 0$, $e^x > 0$, $(e^x - 1)^2 > 0$. Ainsi, f'(x) est du signe opposé à $e^x - x$ et d'après la question précédente, f' est négative : f est décroissante sur \mathbb{R}^*_+ et décroissante sur \mathbb{R}^*_+ Remarque : f n'est pas nédécroissante sur \mathbb{R}^z (qui n'est pas un intervalle!)

4. Déterminer les limites de f aux bornes de son domaine de définition.

C'est-à-dire : la limite de f en $+\infty$, en $-\infty$, et les limites à gauche et à droite en 0.

En
$$+\infty: f(x) = -2\frac{e^x(x-e^{-x})}{e^x(1-e^{-x})} = -2\frac{x-e^{-x}}{1-e^{-x}}$$
. Ainsi, $f(x) \xrightarrow[x \to +\infty]{} +\infty$
En $-\infty: e^x - 1 \to -1$ et $xe^x - 1 \to -1$ donc $f(x) \xrightarrow[x \to +\infty]{} -2$
En $0^+: xe^x - 1 \to -1$ donc $-2(xe^x - 1) \to 2$. Par ailleurs, $e^x - 1 \to 0^+$ donc $f(x) \xrightarrow[x \to 0^+]{} +\infty$
En $0^-:$ de même, $f(x) \xrightarrow[x \to 0^-]{} -\infty$

5. Montrer que la courbe de f admet trois asymptotes dont on déterminera les équations.

D'après la question précédente, f admet une asymptote verticale d'équation x=0 et une asymptote horizontale en $-\infty$ d'équation y=-2. Il reste à déterminer l'équation d'une asymptote oblique en $+\infty$.

En utilisant les résultats de l'exercice précédent, cherchons la limite en $+\infty$ de $\frac{f(x)}{x} = -2\frac{xe^x-1}{x(e^x-1)} = -2\frac{xe^x(1-\frac{1}{xe^x})}{xe^x(1-\frac{1}{e^x})}\xrightarrow[x\to+\infty]{} -2$

Ainsi, si f admet une asymptote oblique en $+\infty$ d'équation y=ax+b, alors a=-2Finalement, cherchons la limite de $f(x)+2x=-2\frac{xe^x-1}{e^x-1}+2x=-2\left(\frac{xe^x-1-x(e^x-1)}{e^x-1}\right)=-2\frac{x-1}{e^x-1}\xrightarrow[x\to+\infty]{}$

Ainsi, f admet une asymptote en $+\infty$ d'équation y = -2x

- 6. Étudier les positions relatives de la courbe et de l'asymptote à la courbe au voisinage de $+\infty$. On cherche donc à étudier le **signe** de $f(x) (-2x) : f(x) + 2x = -2\frac{x-1}{e^x-1}$. Quand $x \ge 1$, $x 1 \ge 0$ et $e^x 1 \ge 0$ donc $f(x) + 2x \le 0 : f$ est **au-dessous** de son asymptote.
- 7. Tracer le graphe de f.

Exercice 9. 1. Montrer que léquation $x^5 = x^2 + 2$ a au moins une solution sur]0,2[. Posons $f: x \mapsto x^5 - x^2 - 2$. f est continue sur \mathbb{R} comme polynôme et f(0) = -2, $f(2) = 2^5 - 2^2 - 2 = 32 - 6 = 26$. Ainsi, par TVI, l'équation f(x) = 0 admet au moins une solution sur l'intervalle]0;2[.

- 2. Montrer que le polynôme $x^3 + 2x 1$ a une unique racine qui appartient à lintervalle]0,1[. Posons $g: x \mapsto x^3 + 2x 1$. g est dérivable et pour tout $x \in \mathbb{R}, g'(x) = 3x^2 + 2 > 0$. Ainsi, g est strictement croissante sur]0;1[et g(0) = -1, g(1) = 2 donc g admet une unique racine sur]0;1[
- 3. Montrer que léquation $x^2(\cos x)^5 + x \sin x + 1 = 0$ admet au moins une solution réelle. Posons $h: x \mapsto x^2(\cos x)^5 + x \sin(x) + 1$. h étant continue comme somme et produit de fonctions continues, il suffit de trouver deux réels où h est de signe différent. Par exemple, h(0) = 1 et $h(\pi) = -\pi^2 + 1 < 0$. Ainsi, h(x) = 0 admet au moins une solution entre $-\pi$ et 0

Exercice 10 (Démo du TVI par dichotomie). Soient a < b deux réels et f continue sur [a;b] telle que f(a) < 0 et f(b) > 0. On construit deux suites avec : $a_0 = a, b_0 = b$ et le phénomène suivant : on construit $m = \frac{a_n + b_n}{2}$. Si f(m) < 0, on pose $a_{n+1} = m$ et $b_{n+1} = b_n$. Si $f(m) \ge 0$, on pose $a_{n+1} = a_n$ et $b_{n+1} = m$.

1. Montrer que pour tout $n \in \mathbb{N}$, $f(a_n) < 0$ et $f(b_n) \ge 0$

Initialisation: pour n = 0, $a_0 = a$ et f(a) < 0 et $b_0 = b$ et f(b) > 0. La propriété est initialisée. Hérédité: soit $n \in \mathbb{N}$ tel que $f(a_n) < 0$ et $f(b_n) \ge 0$.

Raisonnons par disjonction de cas.

Si f(m) < 0, $a_{n+1} = m$ et donc $f(a_{n+1}) < 0$. Par hypothèse de récurrence, $f(b_{n+1}) = f(b_n) \ge 0$. Si $f(m) \ge 0, b_{n+1} = m$ et $f(b_{n+1}) \ge 0$. Par hypothèse de récurrence, $f(a_{n+1}) = f(a_n) < 0$. Ainsi, la récurrence est établie.

Conclusion: pour tout $n \in \mathbb{N}$, $f(a_n) < 0$ et $f(b_n) \ge 0$

2. Montrer que (a_n) et (b_n) sont adjacentes

Montrons d'abord que pour tout $n \in \mathbb{N}$, $a_n \leq b_n$. Cela se montre par récurrence avec : si $a_n \leq b_n$, alors $a_n \leq m \leq b_n$.

Montrons maintenant que la suite (a_n) est croissante : pour tout $n \in \mathbb{N}$, il y a deux cas : soit $a_{n+1}=a_n$, soit $a_{n+1}=\frac{a_n+b_n}{2}$ avec $b_n\geq a_n$, et donc $a_{n+1}\geq a_n$.

De même, on montre aisément que la suite (b_n) est décroissante.

Par ailleurs, par récurrence, montrons que pour tout $n \in \mathbb{N}, b_n - a_n = \frac{b-a}{2^n}$:

Initialisation: pour n = 0, $b_0 - a_0 = b - a = \frac{b-a}{2^0}$

<u>Hérédité</u>: soit $n \in \mathbb{N}$ tel que $b_n - a_n = \frac{b-a}{2^n}$. Alors,

 $\frac{a_{n+1}}{\sin f(m)} < 0, \ a_{n+1} = m \text{ et donc } b_{n+1} - a_{n+1} = b_n - \frac{a_n + b_n}{2} = \frac{b_n - a_n}{2} = \frac{b - a}{2^n \times 2} = \frac{b - a}{2^{n+1}}$ $\sin f(m) \ge 0, \ b_{n+1} = m \text{ donc } b_{n+1} - a_{n+1} = \frac{a_n + b_n}{2} - a_n = \frac{b_n - a_n}{2} = \frac{b - a}{2 \times 2^n} = \frac{b - a}{2^{n+1}}$

Ainsi, la récurrence est établie.

Finalement, $b_n - a_n = \frac{b-a}{2^n} \xrightarrow[n \to +\infty]{} 0$. On en déduit que (a_n) et (b_n) sont adjacentes.

3. Conclure.

D'après le théorème des suites adjacentes, (a_n) et (b_n) convergent vers une même limite ℓ . Puisque pour tout $n \in \mathbb{N}$, $f(a_n) < 0$, alors par continuité de f, $f(a_n) \to f(\ell)$ donc $f(\ell) \le 0$. De même, pour tout $n \in \mathbb{N}$, $f(b_n) \geq 0$ et $f(b_n) \to f(\ell)$ par continuité, et donc $f(\ell) \geq 0$. Ainsi, $f(\ell) = 0$ et on a montré le théorème des valeurs intermédiaires.

Remarque: cette preuve a l'avantage sur celle du cours d'être effective: ça donne une manière pour trouver une valeur approchée d'un point où f s'annule (cf question suivante). Par ailleurs, on dirait qu'on n'utilise pas le théorème de la borne supérieure, mais on utilise le théorème des suites adjacentes, montré à partir du théorème de la limite monotone donc du théorème de la borne supérieure, qui est quand même caché derrière tout ça.

4. Pour $f: x \mapsto x^2 - 2$ sur [1;2], adapter en un script Python donnant une valeur approchée de $\sqrt{2}$

```
def valeur_approchee(epsilon):
      a = 1
      while b-a > epsilon:
          m = (a+b)/2
          if m**2 - 2 < 0:
              a = m
          else:
              b = m
      return (a,b)
```

Remarque: essayer de faire fonctionner cette fonction sur vos ordis, avec différentes valeurs de epsilon!

Exercice 11 (Max de fonctions continues). Montrer par récurrence que si f_1, \ldots, f_n sont des fonctions continues, alors $\max(f_1, \ldots, f_n)$ est une fonction continue.

<u>Initialisation</u>: pour 2 fonctions, ça fait partie du cours.

<u>Hérédité</u>: soit $n \in \mathbb{N}$ tel que pour toutes n fonctions continues, le maximum de ces fonctions soit une fonction continue. Soient f_1, \ldots, f_{n+1} des fonctions continues sur un même intervalle I. Alors,

$$\max(f_1, \dots, f_{n+1}) = \max(\max(f_1, \dots, f_n), f_{n+1})$$

Par hypothèse de récurrence, $\max(f_1,\ldots,f_n)$ est une fonction continue, et de même pour f_{n+1} donc par propriété du cours (qui correspond à n=2), $\max(\max(f_1,\ldots,f_n),f_{n+1})$ est continue sur I. La récurrence est établie.

Exercice 12 (Caractérisation séquentielle de la limite). Hors programme, mais instructif, pour manipuler les définitions. En raisonnant par l'absurde, démontrer que si pour toute suite (x_n) vérifiant $x_n \to x$, $(f(x_n)) \to f(x)$, alors f est continue en x

Soit f une fonction définie sur I et $x \in I$. Supposons par l'absurde que toutes les suites $(x_n) \in I^n$ vérifiant $x_n \to x$ vérifient aussi $f(x_n) \to f(x)$ et que f(x) est discontinue en x, i.e. : f(y) ne converge pas vers f(x) quand $y \to x$, i.e. :

$$\exists \varepsilon > 0, \forall \alpha > 0, \exists y \in I, |y - x| \le \alpha \text{ et } |f(y) - f(x)| \ge \varepsilon$$

Pour tout $n \in \mathbb{N}^*$, prenons $\alpha_n = \frac{1}{n} : \exists y_n \in I, |y_n - x| \leq \frac{1}{n} \text{ et } |f(y_n) - f(x)| \geq \varepsilon$. Puisque $x - \frac{1}{n} \leq y_n \leq x + \frac{1}{n}$, par théorème des gendarmes, $y_n \to x$. Par hypothèse, on a donc $f(y_n) \to f(x)$. Ainsi, $f(y_n) - f(x) \to 0$. Ceci est en contradiction avec $|f(y_n) - f(x)| \geq \varepsilon$, donc f est continue en x.

Exercice 14. Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 et vérifiant : $\forall x \in \mathbb{R}$, f(x) = f(2x). Montrer que f est constante.

On cherche à montrer que toutes les valeurs de f sont égales entre elles, ou égales à une constante (c'est deux stratégies différentes : prendre x et y et montrer f(x) = f(y), ou trouver une constante c telle que pour tout x, f(x) = c). Ici, on va utiliser la deuxième stratégie, avec c = f(0)

Soit $x \in \mathbb{R}$. Montrons : f(x) = f(0). Par hypothèse, $f(x) = f(2 \times \frac{x}{2}) = f(\frac{x}{2})$. On montre alors par récurrence immédiate : $\forall n \in \mathbb{N}^*, f(x) = f(\frac{x}{2^n})$.

Puisque $\frac{x}{2^n} \xrightarrow[n \to +\infty]{} 0$, alors par continuité de f, $f\left(\frac{x}{2^n}\right) \xrightarrow[n \to +\infty]{} f(0)$. Par ailleurs, $f\left(\frac{x}{2^n}\right) \xrightarrow[n \to +\infty]{} f(x)$ Par unicité de la limite, f(x) = f(0) et donc f est une fonction constante.

Exercice 15. Soit $f: \mathbb{R} \to \mathbb{R}$ continue et $g: \mathbb{R} \to \mathbb{R}$ bornée. Montrer que $f \circ g$ et $g \circ f$ sont bornées. On voit les mots « continue » et « bornée » : on doit penser au théorème des bornes, mais où/comment l'utiliser?

Traduisons les hypothèses : il existe $M \in \mathbb{R}$ tel que pour tout $y \in \mathbb{R}$, $|g(y)| \leq M$. En particulier pour les images par la fonction $f : \forall x \in \mathbb{R}, |g(f(x))| \leq M$ donc $g \circ f$ est bornée. Ici, on n'a pas eu besoin du théorème des bornes, ni de la continuité de f.

Par ailleurs, on a écrit que pour tout $x \in \mathbb{R}, g(x) \in [-M; M]$. Or, par théorème des bornes, sur le segment [-M; M], la fonction continue f est bornée : il existe a, b tels que pour tout $y \in [-M; M], a \le f(y) \le b$. En particulier pour les images de g qui sont dans ce segment : pour tout $x \in \mathbb{R}, a \le f(g(x)) \le b$ donc $f \circ g$ est bornée.

Exercice 17. Montrer qu'une fonction périodique sur \mathbb{R} admettant une limite en $+\infty$ est constante. Comme à l'exercice 14, il faut trouver une constante candidate à être la valeur que prend f partout. Notons donc ℓ la limite de f en $+\infty$ et T>0 une période de f. Soit $x\in\mathbb{R}$. Pour tout $n\in\mathbb{N}$, f(x)=f(x+nT). Quand $n\to+\infty, x+nT\to+\infty$. Ainsi, par composition, $f(x+nT)\stackrel{\ell}{\to}$ et $f(x+nT)\to f(x)$: par unicité de la limite, $f(x)=\ell$ et donc f est constante.

- **Exercice 18** (Équation différentielle et unicité de la limite). Soit f une fonction dérivable sur \mathbb{R} et vérifiant f = 2f'. On suppose que f a une limite $\ell \in \mathbb{R}$ en $+\infty$
 - 1. Montrer que f' a une limite en $+\infty$ Puisque $f' = \frac{1}{2}f$ et que f a une limite, alors f' a une limite $(f'(x) \xrightarrow[x \to +\infty]{\ell}]$
 - 2. Montrer que si f et f' ont une limite en $+\infty$ alors f' tend vers 0 Supposons par l'absurde que f' a une limite ℓ' différente de 0, sans restriction de généralité $\ell' > 0$. Alors il existe x_0 tel que pour tout $x \geq x_0$, $f'(x) > \frac{\ell'}{2}$ et donc pour tout $x \geq x_0$, $f(x) = f(x_0) + \int_{x_0}^x f'(t)dt \geq f(x_0) + \int_{x_0}^x \frac{\ell'}{2}dt = f(x_0) + \frac{\ell'}{2}(x - x_0)$. Alors ,quand $x \to +\infty$, $f(x) \to +\infty$, ce qui est absurde. Ainsi, $\lim f'(x) = 0$
 - 3. En déduire la limite de f en $+\infty$ D'après les deux questions prédécentes, $\lim f'(x) = \frac{1}{2} \lim f(x) = 0$ donc $f(x) \xrightarrow[x \to +\infty]{} 0$