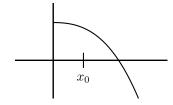
Devoir Maison n°4 - Méthode de Newton et $\sqrt{2}$

Exercice 1 - Autour de la méthode de Newton

Consigne : Pour résoudre numériquement l'équation f(x) = 0, on établit l'algorithme ci-dessous à gauche. L'appliquer (graphiquement) à la fonction f tracée à droite.

- 1. Choisir un réel x_0 quelconque
- 2. Tracer la tangente T_0 à la courbe de f au point $M(x_0, f(x_0))$. T_0 coupe l'axe des abscisses au point d'abscisse x_1 .
- 3. Tracer la tangente T_1 à la courbe de f au point $M(x_1,f(x_1)),T_1$ coupe l'axe des abscisses au point d'abscisse x_2
- 4. Recommencer plusieurs fois.



I. On admet que la tangente à la courbe de f à l'abscisse a a pour équation : y = f'(a)(x-a) + f(a). En déduire une expression de x_{n+1} en fonction de x_n

 x_{n+1} est l'abscisse du point d'intersection de la tangente et de l'axe des abscisses d'équation y=0, d'où l'équation :

$$f'(x_n)(x_{n+1} - x_n) + f(x_n) = 0$$

qui se résout en : $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

- 2. On cherche à résoudre l'équation $\cos(x)=x^3$. On pose $f:x\mapsto\cos(x)-x^3$
 - (a) Vérifier que l'équation f(x) = 0 admet une solution.

$$\forall x \in \mathbb{R}, f'(x) = -\sin(x) - 3x^2$$

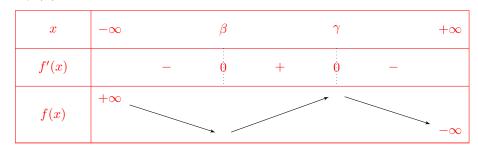
En pratique, on n'a pas besoin des variations de f, seulement des limites. Certain·es d'entre vous ont déterminé les variations de f en utilisant des outils numériques (tracer f, estimer les racines de f'). Je vous propose une rédaction exhaustive pour répondre précisément aux variations de f: on peut **re-dériver**:

$$f''(x) = -\cos(x) - 6x$$
 ; $f'''(x) = -\sin(x) - 6 < 0$

Ainsi, f''' est négative et f'' est décroissante. Puisque $f''(x) \xrightarrow[x \to -\infty]{} +\infty$ et $f''(x) \xrightarrow[x \to +\infty]{} -\infty$, et que f'' est strictement décroissante, il existe un unique $\alpha \in \mathbb{R}$ tel que $f''(\alpha) = 0$ f'' est positive sur $[-\infty; \alpha]$ et négative sur $[\alpha; +\infty[$. On déduit le tableau de variations :

x	$-\infty$		α		+∞
f''(x)		+	0	_	
f'(x)	$-\infty$				$-\infty$

Sans calculer $f'(\alpha)$, on sait que $f'(\alpha) > 0$ car f'(0) = 0 et $\alpha \neq 0$. Puisque $f'(\alpha) > 0$, il existe donc deux solutions β, γ à l'équation $f'(\alpha) = 0$ d'où le tableau de variations :



Ceci répond aux variations de f (on ne connaît pas β et γ , même si on peut par exemple remarquer que 0 est une des deux solutions). Le plus important ici : f est continue et vérifie $f(x) \xrightarrow[x \to -\infty]{} +\infty$ et $f(x) \xrightarrow[x \to +\infty]{} -\infty$. Par théorème des valeurs intermédiaires, il existe donc un réel x tel que f(x) = 0.

Remarque: on ne demandait pas de montrer que la solution était unique!

(b) Compléter le programme suivant pour qu'il calcule les premiers termes de la suite (x_n)

```
from math import cos, sin
def f(y):
    return cos(y)-y**3
def fprime(y):
    return -sin(y)-3*y**2
x = 0.5
n = 100
for k in range(n):
    x = x - f(x)/fprime(x)
print(x)
```

(c) Implémenter ce programme et donner une valeur approchée d'une solution de l'équation f(x)=0. Trouve-t-on la même limite en changeant la valeur de x_0 ?

Quelle que soit la valeur de x_0 , on trouve comme valeur approchée $x \simeq 0,865474$

Exercice 2 - Méthode de Newton appliquée à $\sqrt{2}$

On cherche maintenant à approximer $\sqrt{2}$, c'est-à-dire une racine de l'équation $x^2-2=0$

I. En utilisant la première partie, justifier pourquoi la suite (u_n) définie par :

$$u_0 = 1$$
 ; $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2} \left(u_n + \frac{2}{u_n} \right)$

est l'application de la méthode de Newton à ce problème.

Avec la fonction $f: x \mapsto x^2 - 2$ de dérivée $f': x \mapsto 2x$. La formule donnée à la question 1 du premier exercice donne alors :

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n}$$

$$= \frac{2x_n^2 - (x_n^2 - 2)}{2x_n}$$

$$= \frac{x_n^2 + 2}{2x_n}$$

$$= \frac{1}{2} \left(\frac{x_n^2}{x_n} + \frac{2}{x_n} \right)$$

$$= \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$$

On retrouve la définition de la suite (u_n)

2. Une autre justification Traçons un rectangle de côté 1 et d'aire 2. Notons x_1 la moyenne de ses deux côtés. Traçons un rectangle de côté x_1 et d'aire 2. Notons x_2 la moyenne de ses deux côtés. Recommençons plusieurs fois. Comment se calcule x_{n+1} à partir de x_n ? Pourquoi peut-on penser que $x_n \xrightarrow[n \to +\infty]{} \sqrt{2}$?

À partir de x_n , le deuxième côté du rectangle aura comme longueur $\frac{2}{x_n}$ et donc $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$

À la première étape, le rectangle que l'on dessine est très «aplati» (un côté de longueur 1 et un côté de longueur 2), en prenant la moyenne des deux côtés on a une longueur intermédiaire entre les deux. Au fur et à mesure des étapes, le rectangle obtenu ressemble de plus en plus à un carré. On peut imaginer qu'à la limite le rectangle soit un carré, et donc que son côté soit $\sqrt{2}$

- 3. Étude de la convergence de (u_n)
 - (a) Montrer par récurrence que pour tout $n \in \mathbb{N}^*$, $u_n \geq \sqrt{2}$ Posons $f: x \mapsto \frac{1}{2} \left(x + \frac{2}{x}\right)$. f est croissante sur $[\sqrt{2}; +\infty[$ (en dérivant!) Calculons: $u_1 = \frac{1}{2} \left(1 + \frac{2}{1}\right) = \frac{1}{2} \times 3$. Or $\left(\frac{3}{2}\right)^2 = \frac{9}{4} > 2$ ce qui permet de dire que $u_1 \geqslant \sqrt{2}$. Montrons la propriété demandée par récurrence :
 - Initialisation : pour n = 1, on vient de le vérifier

— Hérédité : soit n tel que $u_n \ge \sqrt{2}$. Puisque f est croissante sur $[2; +\infty[$,

$$f(u_n) \ge f(\sqrt{2})$$

c'est-à-dire $u_{n+2} \ge \sqrt{2}$

— Conclusion : pour tout $n \in \mathbb{N}^*, u_n \geq \sqrt{2}$

- (b) Montrer que (u_n) est décroissante à partir d'un certain rang. Pour $n \in \mathbb{N}^*$, $u_n \in [\sqrt{2}; +\infty[$. Puisque f est croissante sur cet intervalle, (u_n) est monotone. (résultat du cours) Calculons : $u_2 = \frac{1}{2}(u_1 + \frac{2}{u_1}) = \frac{1}{2}\left(\frac{3}{2} + \frac{4}{3}\right) = \frac{1}{2} \times \frac{9+8}{6} = \frac{17}{12} < \frac{3}{2}$ Puisque $(u_n)_{n \in \mathbb{N}^*}$ est monotone et que $u_2 < u_1$, (u_n) est décroissante pour $n \ge 1$
- (c) Montrer que (u_n) est convergente et déterminer sa limite Puisque (u_n) est décroissante et minorée (d'après les deux questions précédentes), d'après le théorème de la limite monotone, (u_n) est une suite convergente. On appelle ℓ sa limite. Par les opérations usuelles, $u_{n+1} \to \frac{1}{2}(\ell + \frac{2}{\ell})$ et par unicité de la limite :

$$\ell = \frac{1}{2} \left(\ell + \frac{2}{\ell} \right)$$

On résout:

$$\ell = \frac{1}{2} \frac{\ell^2 + 2}{\ell} \iff 2\ell^2 = \ell^2 + 2$$

$$\iff \ell^2 = 2$$

$$\iff \ell = \sqrt{2} \text{ ou } \ell = -\sqrt{2}$$

Puisque $u_n \geq \sqrt{2}$, en passant à la limite $\ell \geq \sqrt{2}$ et on en déduit : $\ell = \sqrt{2}$

(d) Écrire un programme Python qui permet de calculer les premiers termes et qui s'arrête lorsque $|u_n^2-2|$ est inférieur à 10^{-6}

$$u = I eps = I0^{**}(-6)$$
 while $abs(u^{**}2 - 2) > eps : u = I/2^*(u+2/u)$ print(u)

Remarque : l'énoncé ne dit pas ce qu'on veut afficher, mais un programme qui juste «s'arrête» à ce moment ne sert à rien : on affiche une valeur approchée de $\sqrt{2}$ ici