Chapitre 8 : Calcul matriciel

Algèbre 2

I. Premières opérations

1. Définition

Définition 1. Soient $m, n \in \mathbb{N}^*$. On appelle matrice réelle de taille $m \times n$ un tableau de réels comportant m lignes et n colonnes :

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = (a_{ij})_{1 \le i \le m, 1 \le j \le n}$$

L'ensemble des matrices à m lignes et n colonnes est noté $\mathcal{M}_{m,n}(\mathbb{R})$. Si m=n, on note plus simplement $\mathcal{M}_n(\mathbb{R})$

Exemples.

 $\forall (i, j) \in [|1;5|] \times [|1;4|], M_{i,j} = \dots$

On note 0_{mn} (ou 0 si il n'y a pas d'ambiguïté) la matrice nulle $A: \forall i \in [|1;m|], \forall j \in [|1;n|], A_{ij} = 0$

Définition 2 (Matrices lignes, matrices colonnes). On appelle matrice ligne tout élément de $\mathcal{M}_{1n}(\mathbb{R})$ et matrice colonne tout élément de $\mathcal{M}_{n1}(\mathbb{R})$, où $n \in \mathbb{N}^*$

Définition 3 (Égalité matricielle). Soient $(m,n) \in (\mathbb{N}^*)^2$ et $A,B \in \mathcal{M}_{mn}(\mathbb{R})$. On dit que A et B sont égales (A=B) si leurs coefficients sont égalex :

$$\forall i \in [|1; m|], \forall j \in [|1; n|], A_{ij} = B_{ij}$$

2. Premières opérations

Définition 4 (Multiplication par un scalaire). Soit $A = (a_{ij}) \in \mathcal{M}_{mn}(\mathbb{R})$ une matrice et λ un réel. On définit la **multiplication de** A **par** λ , notée λA , la matrice obtenue en multipliant chaque coefficient par λ :

$$\forall i \in [|1, m|], \forall j \in [|1, n|], (\lambda A)_{ij} = \lambda a_{ij}$$

Exemple.

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -3 \end{pmatrix} \qquad \qquad 3A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -3 \end{pmatrix} \qquad \qquad -A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -3 \end{pmatrix}$$

Propriété 5. Soit M une matrice de $\mathcal{M}_{mn}(\mathbb{R})$ et λ, μ deux réels.

• $0 \times M = 0_{mn}(\mathbb{R})$

• $\lambda(\mu M) = (\lambda \times \mu)M$

• $1 \times M = M$

• $\lambda M = 0 \Leftrightarrow (\lambda = 0 \text{ ou } M = 0)$

Démonstration.

Définition 6 (Somme). Soient $A = (a_{ij}), B = (b_{ij})$ deux éléments de $\mathcal{M}_{mn}(\mathbb{R})$. On définit la **somme** de A et B, notée A + B, comme la matrice obtenue en additionnant les coefficients un à un :

$$\forall i \in [|1;m|], \forall j \in [|1;n|], (A+B)_{ij} = a_{ij} + b_{ij}$$

Exemple.

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -3 \end{pmatrix} \qquad B = \begin{pmatrix} -3 & 4 & 1 \\ 6 & -2 & 0 \end{pmatrix} \qquad A + B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & 0 \end{pmatrix}$$

Propriété 7. Soient A,B,C trois matrices de mêmes dimensions $m \times n$ (si les matrices n'ont pas mêmes dimensions ce qui suit n'a aucun sens!) et λ,μ deux réels.

- A + B = B + A (commutativité)
- (A+B)+C=A+(B+C) (associativité)
- $A + 0_{mn} = A$ (neutre)

- $(\lambda + \mu)A = \lambda A + \mu A$ (distributivité)
- $\lambda(A+B) = \lambda A + \lambda B$ (distibutivité)
- $\lambda A = \lambda B \Leftrightarrow (\lambda = 0 \text{ ou } A = B)$
- ♡ Remarque. L'associativité est la propriété implicitement utilisée lorsqu'on écrit une somme sans préciser l'ordre des opérations. Cette liste de propriétés veut dire : jusque là, tout va bien.

Démonstration. Partielle en cours. Les propriétés sont vraies coefficient par coefficient, on revient à la définition.

3. Transposée d'une matrice

Définition 8. Soit $M \in \mathcal{M}_{m,n}(\mathbb{R})$ une matrice. On appelle **transposée de** M, notée tM , la matrice de $\mathcal{M}_{n,m}(\mathbb{R})$ dont le coefficient en (i,j) est $M_{i,i}$

Exemple. Déterminer la transposée de la matrice $A = \begin{pmatrix} 2 & -1 & 4 \\ 3 & 0 & -3 \end{pmatrix}$

- \heartsuit Propriété 9. Pour deux matrices A,B telles que tout soit bien défini et pour tout réel λ :
 - \bullet $t(^tA) = A$
 - t(A+B) = tA + tB

 $D\'{e}monstration.$

Définition 10 (Matrices symétriques, antisymétriques). Soit $M \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée. On dit que M est

symétrique si

$$\forall i, j \in [|1;n|], M_{ij} = M_{ji}$$

• $t(\lambda A) = \lambda^t A$

• antisymétrique si

$$\forall i,j \in [|1;n|], M_{ji} = -M_{ij}$$

Exemple.

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

A est symétrique

$$B = \begin{pmatrix} 1 & 2 & 0 \\ -2 & 3 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

B est antisymétrique

$$C = \begin{pmatrix} 1 & 2 & 0 \\ 90 & 3 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

C n'est ni l'un ni l'autre

Propriété 11. Soit $M \in \mathcal{M}_n(\mathbb{R})$.

• M est symétrique ssi ${}^tM = M$

• M est antisymétrique ssi ${}^tM = -M$

Démonstration. Laissée en exercice.

Fiche sur l'analyse-synthèse

Exercice. Soit $n \ge 1$ et $M \in \mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que si M est symétrique et antisymétrique, alors M=0
- 2. Par analyse-synthèse, montrer qu'il existe un unique couple (S, A) tel que
 - (a) S est symétrique
 - (b) A est antisymétrique
 - (c) S + A = M

II. Produit de matrices

1. Un premier exemple

Exemple.

Le tableau suivant donne la composition nutritionnelle de certains ingrédients (pour 1 gramme d'ingrédient)

Composition (en grammes)

composition (en grammes)				
Ingrédient Composant	Chocolat	Caramel	Noisette	
Protéines	0,05	0	0,1	
Glucides	0,6	0,9	0,2	
Lipides	0,3	0,01	0,6	

Pour confectionner les barres chocolatées A et B, il faut les ingrédients dans les quantités suivantes (pour une barre)

Quantités (en grammes)

\ \		,
Barre Ingrédient	A	В
Chocolat	40	20
Caramel	10	22
Noisette	5	10

Déterminer les compositions nutritionnelles des barres A et B (en grammes, pour une barre).

Barre	A	В
Protéines		
Glucides		
Lipides		

Remarque. On appelle cette opération produit matriciel des matrices C et Q (noté CQ)

Exercice. En s'inspirant de l'exemple précédent, calculer si ils existent les produits de matrices suivants :

$$1. \begin{bmatrix} -1 & 2 \\ -5 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 8 & 0 & 1 \\ -2 & 3 & 0 \end{bmatrix} =$$

$$3. \ \begin{pmatrix} 8 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} =$$

$$2. \ \begin{pmatrix} 8 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ -5 & 1 \\ 0 & 1 \end{pmatrix} =$$

 \Diamond

$$4. \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} =$$

Définition 12 (Formule du produit de matrices). Soient $m, n, p \in \mathbb{N}^*$. On se donne deux matrices $A = (a_{ij}) \in \mathcal{M}_{mn}(\mathbb{R})$ et $B = (b_{ij}) \in \mathcal{M}_{np}(\mathbb{R})$. On définit le produit AB comme la matrice $C = (c_{ij}) \in \mathcal{M}_{mp}(\mathbb{R})$ avec

$$\forall i \in [|1;m|], \forall j \in [|1;p|], c_{ij} = \sum_{k=1}^n a_{ik}b_{kj}$$

Propriété 13 (Associativité, distributivité). Pour toutes matrices A, B, C telles que tout soit bien défini, et pour tout $\lambda \in \mathbb{R}$,

1.
$$(AB)C = A(BC)$$

4.
$$\lambda(AB) = (\lambda A)B = A(\lambda B)$$

$$2. \ A(B+C) = AB + AC$$

5.
$$A0_{np} = 0_{mp}$$
 et $0_{pm}A = 0_{pn}$

3.
$$(A + B)C = AC + BC$$

Démonstration. Démonstration partielle en classe, savoir écrire les calculs.

Remarque (Ce qui se passe mal!). En général, le produit matriciel ne commute pas. Et même ...

On pose
$$A = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}$

Définition 14 (Commutation). Si A, B sont deux matrices telles que AB et BA sont bien définis et que AB = BA, on dit que A et B commutent.

Propriété 15 (Transposée du produit). Soient m, n, p des entiers et $A \in \mathcal{M}_{mn}(\mathbb{R}), B \in \mathcal{M}_{np}(\mathbb{R})$. Alors : ${}^t(AB) = {}^tB^tA$

Lycée Joffre

2. Cas des matrices carrées : puissances d'une matrice

Exemple. Soit
$$I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 et $M = \begin{pmatrix} 2 & -1 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 4 & -3 & 2 & -1 \\ 5 & -3 & 1 & 0 \end{pmatrix}$

Calculer $I \times M$ et $M \times I$

Définition 16 (Matrice identité). La **matrice identité** de taille n est la matrice carrée, notée I_n , dont les coefficients (δ_{ij}) vérifient :

$$\forall (i,j) \in [[1,n]]^2, \ \delta_{ij} = \left\{ \begin{array}{ll} 1 & \text{si } i=j \\ 0 & \text{si } i \neq j \end{array} \right.$$

$$I_n = \left(\begin{array}{ll} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{array} \right)$$

Propriété 17 (Neutre). Pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$, $MI_n = I_n M = M$

On dit que I_n est le neutre de la multiplication matricielle. (Connaissez-vous des exemples d'éléments neutres pour d'autres opérations?)

Démonstration.

Définition 18 (Puissance d'une matrice). Soit $A\in\mathcal{M}_n(\mathbb{R})$. On définit les puissances de A par :

- $A^0 = I_r$
- pour tout $k \in \mathbb{N}$, $A^{k+1} = A \times A^k = A^k \times A$
- \heartsuit Exercice (Suites récurrentes et matrice de transition). On considère une population de poissons divisés en trois catégories : jeunes (larves), adultes, vieux. Entre un temps n et un temps n+1, on considère que les jeunes deviennent adultes, que la moitié des vieux meurent, que la moitié des adultes devient vieille, que l'autre moitié reste adulte et que les adultes font en moyenne 1,9 larve par adulte.

On note j_n, a_n, v_n le nombre de poissons de chaque catégorie à un instant n.

- 1. Écrire $j_{n+1}, a_{n+1}, v_{n+1}$ en fonction de j_n, a_n, v_n à partir des données de l'énoncé.
- 2. On considère pour tout n, $X_n = \begin{pmatrix} j_n \\ a_n \\ v_n \end{pmatrix}$. Déterminer une matrice $A \in \mathcal{M}_{3,3}(\mathbb{R})$ telle que pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$
- 3. Montrer que pour tout $n \in \mathbb{N}$, $X_n = A^n X_0$

Exercice. Soit
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
. Montrer que pour tout $n \in \mathbb{N}^*$, $A^n = \begin{pmatrix} 2^{n-1} & 0 & 2^{n-1} \\ 0 & 0 & 0 \\ 2^{n-1} & 0 & 2^{n-1} \end{pmatrix}$

Définition 19 (Matrices diagonales). On appelle matrice **diagonale** toute matrice dont les coefficients (a_{ij}) vérifient : $i \neq j \Rightarrow a_{ij} = 0$ (dessin!)

Exemple. La matrice identité ou
$$B = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Propriété 20 (Puissance d'une matrice diagonale). Soit $k \in \mathbb{N}$.

Si
$$A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$
 alors $A^k = \begin{pmatrix} \lambda_1^k & 0 & \dots & 0 \\ 0 & \lambda_2^k & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n^k \end{pmatrix}$

Démonstration. Par récurrence.

Propriété 21 (Formule du binôme). Soient A, B deux matrices carrées qui commutent. Alors pour tout $n \in \mathbb{N}$,

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}$$

Démonstration. Similaire à celle du chapitre 1!

3. Écriture matricielle d'un système linéaire

Exemple. Avec la matrice M de la section précédente, chercher toutes les matrices colonnes X telles que MX = 0

Propriété 22. Soit (S) le système suivant :

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n &= \lambda_1 \\ a_{21}x_1 + \dots + a_{2n}x_n &= \lambda_2 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n &= \lambda_m \end{cases}$$

On pose
$$M = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \text{ et } \Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_m \end{pmatrix} \text{ Alors, (S) est \'equivalent \`a l'\'equation matricielle : }$$

$$MX = \Lambda$$

Démonstration. Immédiat avec la formule du produit de matrices.

III. Inversibilité

1. Propriétés

 \Diamond

Exemple. Calculer le produit AB des matrices A et B définies par :

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix} \text{ et } B = \begin{pmatrix} -1 & 1 & 0 \\ -3 & 0 & 2 \\ 2 & 0 & -1 \end{pmatrix}$$

Définition 23 (Matrice inversible, inverse). On dit que $A \in \mathcal{M}_n(\mathbb{R})$ est **inversible** si il existe $B \in \mathcal{M}_n(\mathbb{R})$ telle que :

$$AB = BA = I_n$$

On dit alors que B est l'inverse de la matrice A. On note $A^{-1} = B$, cette matrice est unique.

Démonstration. De l'unicité.

Propriété 24 (Admise). En fait, si $AB = I_n$ ou $BA = I_n$, alors A est inversible d'inverse B.

 \heartsuit Exercice (En dimension 2). Considérons la matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ avec $ad - bc \neq 0$.

Soit $B = \frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. Calculer AB, montrer que A est inversible.

Propriété 25. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ des matrices inversibles.

- I_n est inversible et $(I_n)^{-1} = I_n$
- A^{-1} est inversible et $(A^{-1})^{-1} = A$

- ${}^{t}A$ est inversible et $({}^{t}A)^{-1} = {}^{t}(A^{-1})$
- AB est inversible et $(AB)^{-1} = B^{-1}A^{-1}$

Année 2024-2025

Démonstration.

 \Diamond

Lycée Joffre

Remarque. En général, la somme de deux matrices inversibles n'est pas inversible.

Définition 26. Si A est inversible et $n \in \mathbb{N}$, on élargit la définition des puissances en définissant $A^{-n} = (A^{-1})^n = (A^n)^{-1}$

Propriété 27 (Caractérisations). Soit $A \in \mathcal{M}_n(\mathbb{R})$. Les propositions suivantes sont équivalentes à l'inversibilité de A.

- $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), (AX = 0 \Leftrightarrow X = 0)$
- $\forall X_1, X_2 \in \mathcal{M}_{n,1}(\mathbb{R}), (AX_1 = AX_2 \Leftrightarrow X_1 = X_2)$
- $\forall M_1, M_2 \in \mathcal{M}_n(\mathbb{R}), (MM_1 = MM_2 \Leftrightarrow M_1 = M_2)$

Ainsi, A est inversible si et seulement si l'équation AX = Y a une unique solution, donnée par $X = A^{-1}Y$

Démonstration. Admis

Remarque. Ceci nous donne en particulier des conditions de non-inversibilité.

Exemple. Une matrice contenant une **colonne nulle** ne peut pas être inversible.

Exemple. On considère les matrices $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}$. Calculer AB, AC. La matrice A peut-elle être inversible?

Propriété 28 (Matrices diagonales). Si $M = Diag(\lambda_1,...,\lambda_n)$, M est inversible si et seulement si tous les λ sont non nuls, et alors $M^{-1} = Diag(\frac{1}{\lambda_1},...,\frac{1}{\lambda_n})$

Démonstration.

2. Cas particulier: matrices triangulaires

Définition 29 (Matrices triangulaires supérieures/inférieures). On appelle matrice **triangulaire supérieure** une matrice $M \in \mathcal{M}_n(\mathbb{R})$ telle que :

$$\forall i, j \in [|1; n|], i > j \Rightarrow M_{ij} = 0$$

M est triangulaire inférieure si :

$$\forall i, j \in [|1; n|], j > i \Rightarrow M_{ij} = 0$$

Exemple.

$$A = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix} \qquad \qquad B = \begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix} \qquad \qquad C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

A est triangulaire supérieure.

B est triangulaire inférieure.

C n'est pas triangulaire

Propriété 30. Si $A, B \in \mathcal{M}_n(\mathbb{R})$ sont triangulaires supérieures (resp. inférieures), alors A+B et AB sont triangulaires supérieures (resp. inférieures)

 $D\'{e}monstration.$

Propriété 31 (Inversibilité). Si M est triangulaire supérieure (resp. inférieure), alors M est inversible si et seulement si ses coefficients diagonaux sont non nuls, et alors M^{-1} est triangulaire supérieure (resp. inférieure).

 \Diamond

 \Diamond

 \Diamond

3. Calcul de l'inverse par pivot de Gauss

Propriété 32. Inverse d'une matrice diagonale, inversibilité d'une matrice triangulaire supérieure.

Remarque (Rappel). Tout système linéaire admet une écriture matricielle. Réciproquement, l'équation AX = Y est un système linéaire. Si A est inversible, cette équation se résout en $X = A^{-1}Y$

Méthode générale:

Plutôt que d'écrire un système linéaire et d'agir sur les lignes du système, on agit directement sur les lignes de la matrice, et de la même façon sur la matrice identité.

$$\begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\label{eq:exercice.} \textit{Étudier l'inversibilit\'e} \ (\text{et le cas \'ech\'eant}, \ \text{calculer l'inverse}) \ \text{des matrices suivantes} :$

$$B = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} \text{ et } C = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$

Rappel des matrices particulières à connaître :

- Matrice nulle
- Matrices lignes, colonnes
- Matrices carrées : en particulier,
 - Matrice identité
 - Matrices diagonales
 - Matrices triangulaires supérieures / inférieures
 - Matrices symétriques / antisymétriques
 - Matrices inversibles