Feuille d'exercices n°8

Premiers calculs, propriétés du cours

Exercice 1. Calculer:

1.
$$3\begin{pmatrix} 1 & -3 \\ 2 & 0 \end{pmatrix} - 2\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
 2. $\begin{pmatrix} 1 & -1 & 3 \\ 0 & 2 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & 2 & 1 \\ 4 & -2 & 0 \\ -4 & 0 & -1 \end{pmatrix}$

Écrire les transposées des matrices obtenues.

Exercice 2. On pose
$$A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 1 \\ -3 & 0 \\ 1 & 2 \end{pmatrix}$, $D = \begin{pmatrix} -2 & 5 \\ 5 & 0 \end{pmatrix}$, $E = \begin{pmatrix} -1 & 1 & 3 \\ -1 & -4 & 0 \\ 0 & 2 & 5 \end{pmatrix}$ Quels produits de deux de ces matrices peut-on réaliser?

Puissances d'une matrice carrée, suites récurrentes

Exercice 3. Conjecturer l'expression de A^n en fonction de n et démontrer la conjecture par récurrence.

1.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$
 2. $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ 3. $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Exercice 4. Soit
$$A = \begin{pmatrix} 0 & 1 \\ -6 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} -2 & 1 \\ -6 & 3 \end{pmatrix}$ et $C = \begin{pmatrix} 3 & -1 \\ 6 & -2 \end{pmatrix}$.

- 1. Calculer B^n et C^n pour tout $n \in \mathbb{N}^*$
- 2. Déterminer des réels α et β tels que $A = \alpha B + \beta C$.
- 3. En déduire A^n pour $n \in \mathbb{N}^*$.
- \diamondsuit **Exercice 5** (Avec un polynôme annulateur). Soit (u_n) la suite définie par $u_0 = 1$, $u_1 = 0$, $u_2 = -2$ et pour tout $n \in \mathbb{N}$,

 $u_{n+3} = 3u_{n+2} - 3u_{n+1} + u_n.$

On pose pour tout
$$n \in \mathbb{N}$$
 $X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix} \in M_{3,1}(\mathbb{R}).$

- 1. Exprimer X_{n+1} en fonction de X_n et d'une matrice $A \in M_3(\mathbb{R})$ qu'on déterminera.
- 2. Exprimer alors X_n en fonction de n, A et X_0 . On justifiera le résultat.
- 3. On pose $B = A I_3$. Calculer B^3 .
- 4. En déduire A^n .
- 5. Exprimer u_n en fonction de n.

Exercice 6 (En diagonalisant). On note
$$A = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$$
, $D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.

- 1. Justifier que P est inversible et calculer P^{-1}
- 2. Calculer PDP^{-1}
- 3. Soit $n \in \mathbb{N}$. Déterminer une écriture de D^n
- 4. **Démontrer que, pour tout** $n \ge 1, A^n = PD^nP^{-1}$. En déduire que, pour tout $n \ge 1$,

$$A^{n} = \begin{pmatrix} -2^{n} + 2 & 2^{n} - 1 \\ -2^{n+1} + 2 & 2^{n+1} - 1 \end{pmatrix}$$

5. On considère (u_n) et (v_n) les deux suites définies par $u_0=1, \ v_0=2$ et $\begin{cases} u_{n+1} &= v_n \\ v_{n+1} &= -2u_n + 3v_n \end{cases}$ On pose, pour $n \geqslant 0$, le vecteur $U_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$. Écrire une relation qui lie U_{n+1}, U_n et A.

- 6. En déduire une expression explicite de u_n et de v_n pour tout $n \ge 0$.
- 7. Remarque : Obtenir le même résultat en conjecturant sur u_1, u_2, v_1, v_2 puis par récurrence.

Exercice 7 (En diagonalisant - chaîne de Markov). On considère les suites (a_n) , (b_n) et (c_n) définie sur \mathbb{N}^* par $a_1 = b_1 = c_1 = \frac{1}{3}$ et :

$$\forall n \in \mathbb{N}^*, \begin{cases} a_{n+1} = a_n + \frac{b_n}{2} + \frac{c_n}{3} \\ b_{n+1} = \frac{b_n}{2} + \frac{c_n}{3} \\ c_{n+1} = \frac{c_n}{3} \end{cases}$$

On pose $X_n = \begin{pmatrix} b_n \\ c_n \end{pmatrix}$.

 \Diamond

- 1. Exprimer X_{n+1} en fonction de X_n et d'une matrice $A \in M_2(\mathbb{R})$ qu'on déterminera.
- 2. Exprimer X_n en fonction de n, A et X_1 .
- 3. (a) On pose $P = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$. Calculer P^{-1} , puis $D = P^{-1}AP$.
 - (b) Exprimer alors D^n , puis A^n , en fonction de n.
- 4. Déduire des questions précédentes l'expression de b_n et c_n en fonction de n.
- 5. Montrer que la suite $(a_n + b_n + c_n)$ est constante. En déduire l'expression de a_n en fonction de n.
- 6. Calculer les limites de a_n , b_n et c_n lorsque n tend vers $+\infty$.

Ce genre de suites apparaît naturellement dans un cadre probabiliste.

Inversibilité

Exercice 8. Étudier l'inversibilité des matrices suivantes. Lorsque la matrice est inversible, déterminer son inverse.

1.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$$
2. $B = \begin{pmatrix} 2 & -1 & 0 & 2 \\ 0 & 3 & 5 & 1 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
3. $C = \begin{pmatrix} 1 & 5 \\ -3 & 2 \end{pmatrix}$
4. $D = \begin{pmatrix} 3 & 4 \\ 6 & 8 \end{pmatrix}$
5. $E = \begin{pmatrix} 1 & 2 & 3 \\ -2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
7. $G = \begin{pmatrix} -1 & 0 & 0 & 1 \\ 3 & 5 & 0 & -3 \\ -2 & -6 & 3 & 2 \\ 0 & -1 & 2 & 1 \end{pmatrix}$

Exercice 9 (Valeurs propres). Déterminer les valeurs du paramètre $\lambda \in \mathbb{R}$ pour lesquelles la matrice $A - \lambda I$ n'est pas inversible.

1.
$$A = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$$
 2. $A = \begin{pmatrix} 1 & 2 & -1 \\ -2 & -3 & 3 \\ 1 & 1 & -2 \end{pmatrix}$

Exercice 10 (Inversibilité avec un polynôme annulateur).

- \diamondsuit 1. Soit $A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$. Montrer que $A^2 = 2I_3 A$, en déduire que A est inversible et calculer A^{-1}
 - 2. Soit $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$. Calculer $A^3 A$. En déduire que A est inversible puis déterminer A^{-1} .
 - 3. Soit $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Calculer $A^2 3A + 2I_3$. En déduire que A est inversible, et calculer A^{-1} .

Exercice 11. Soit a_1, a_2, a_3 des réels non nuls et $M = \begin{pmatrix} 1 & a_1/a_2 & a_1/a_3 \\ a_2/a_1 & 1 & a_2/a_3 \\ a_3/a_1 & a_3/a_2 & 1 \end{pmatrix}$.

Calculer ${\cal M}^2$ et en déduire que ${\cal M}$ n'est pas inversible.

En dimension quelconque

Exercice 12. Soit $M \in \mathcal{M}_{m,n}(\mathbb{R})$. Montrer que tMM est bien définie et qu'elle est symétrique.

Exercice 13. Soient A et B deux matrices non nulles de $\mathcal{M}_n(\mathbb{R})$ vérifiant AB = 0. Montrer que ni A ni B n'est inversible.

 \Diamond **Exercice 14.** Soit $D = (d_{ij}) \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonale de coefficients diagonaux deux à deux distincts. Déterminer l'ensemble des matrices $A = (a_{ij})$ qui commutent avec D.

Exercice 15. Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant pour tout $(i,j) \in [|1;n|]^2, A_{ij} = \frac{i}{j}$

- 1. En utilisant la formule du produit matriciel, déterminer une expression du coefficient (i, j) de A^2
- 2. Montrer que $A^2 = nA$
- 3. Déterminer une expression de A^n
- \Diamond Exercice 16.

On note $A = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 0 & 1 & 1 & \dots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 1 \end{pmatrix}$. Montrer que A est inversible, calculer son inverse.

Exercice 17. Soit $M = \begin{pmatrix} 3 & 1 & \dots & 1 \\ 1 & 3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 3 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$

- 1. Écrire une expression du coefficient (i, j) de M
- 2. Calculer M^2 et l'exprimer en fonction de M et I.
- 3. En déduire que M est inversible et exprimer son inverse en fonction de M et I.

Équations

Exercice 18. Résoudre les équations matricielles suivantes.

1.
$$5\left(X - \begin{pmatrix} 1 & 2\\ 0 & 1\\ 2 & 3 \end{pmatrix}\right) - \left(2X + \begin{pmatrix} 0 & 3\\ 3 & 7\\ 0 & 4 \end{pmatrix}\right) = \begin{pmatrix} 1 & 1\\ 0 & 1\\ 1 & 1 \end{pmatrix} - 2X$$
, d'inconnue $X \in \mathcal{M}_{3,2}(\mathbb{R})$

2.
$$\begin{pmatrix} 4 & 11 \\ 1 & 3 \end{pmatrix} X + \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -3 & 5 \end{pmatrix}$$
, d'inconnue $X \in \mathcal{M}_2(\mathbb{R})$

Exercice 19. Trouver toutes les matrices de la forme $A = \begin{pmatrix} a & b \\ a & b \end{pmatrix}$ dont le carré est égal à :

- 1. La matrice identité
- 2. La matrice nulle
- 3. La matrice A
- \diamondsuit **Exercice 20.** Soient a et b des réels non nuls, et $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. Trouver toutes les matrices $B \in \mathcal{M}_2(\mathbb{R})$ qui commutent avec A, c'est-à-dire telles que AB = BA.

Autres thèmes

Exercice 21 (Nilpotence). Une matrice carrée M est dite nilpotente s'il existe un entier naturel k tel que $M^k = 0$.

Soit
$$A = \begin{pmatrix} -1 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
.

- 1. Décomposer A en la somme d'une matrice diagonale D et d'une matrice nilpotente N, en vérifiant DN = ND.
- 2. En déduire, pour tout $n \in \mathbb{N}, A^n$.
- 3. Peut-on étendre ce résultat à $n \in \mathbb{Z}$?

Exercice 22 (Matrices stochastiques). Une matrice carrée est dite stochastique si tous ses coefficients sont positifs et que la somme des coefficients de chaque ligne vaut 1

- 1. Donner des exemples (variés) de matrices stochastiques de taille 2 ou 3
- 2. Montrer, d'abord en taille 2 puis en général, que le produit de deux matrices stochastiques est une matrice stochastique.

Exercice 23 (Matrices à diagonale dominante - lemme d'Hadamard). Soit n > 2 et $A \in \mathcal{M}_n(\mathbb{R})$ telle que pour tout $i \in [|1, n|]$,

$$|a_{i,i}| > \sum_{j \neq i} |aij|$$

Montrer par l'absurde que A est inversible.

Indication : Considérer une matrice colonne $X \neq 0$ telle que AX = 0 et i_0 un indice tel que $|X_{i_0}|$ soit maximal.