IX. SEMAINE 9:24-28 NOVEMBRE

Contenus:

- 1. Matrices, ensembles de matrices $\mathcal{M}_{m,n}(\mathbb{R})$, $\mathcal{M}_n(\mathbb{R})$. Sommes, multiplications par des réels, transposées de matrices.
- 2. Produit de matrices. La formule du coefficient *i*, *j* de la matrice *AB* doit être connue. Savoir faire en pratique.
- 3. Propriétés des opérations matricielles : commutativité de la somme, associativité de la somme et du produit ... mais **attention** le produit matriciel n'est pas commutatif : il faut connaître au moins un exemple! Pour des matrices, AB = 0 **n'implique pas** A = 0 ou B = 0.
- 4. Notion de puissance d'une matrice carrée. Démonstrations par récurrence, puissances de matrices diagonales, formule du binôme.
- 5. Matrices symétriques, matrices antisymétriques.
- 6. Matrices triangulaires supérieures et inférieures.
- 7. Matrices inversibles : définition par l'existence d'un inverse à gauche et à droite et caractérisations (inversibilité à gauche, $AX = 0 \Rightarrow X = 0$, injectivité de $X \mapsto AX$ pour $X \in \mathcal{M}_n(\mathbb{R})$ ou pour $X \in \mathcal{M}_{n;1}(\mathbb{R})$.
- 8. Critères d'inversibilité : aucune colonne ou ligne n'est nulle (condition nécessaire mais pas suffisante), critères pour les matrices diagonales et triangulaires.
- 9. Calcul d'inverse par pivot de Gauss. Calcul d'inverse à l'aide d'une relation de type : $A^2 A + 3I = 0$.

Questions de cours :

- 1. Montrer (en revenant aux coefficients) que pour des matrices adaptées, (A + B) + C = A + (B + C). Les matrices doivent être introduites avec leurs dimensions.
- 2. Définition du produit de deux matrices. Les matrices doivent être introduites avec leurs dimensions.
- 3. Démonstration : pour $A \in \mathcal{M}_{m,n}(\mathbb{R})$ et $B \in \mathcal{M}_{n,p}(\mathbb{R})$, $^t(AB) = ^t B^t A$
- 4. Démonstration : si $A \in \mathcal{M}_n(\mathbb{R})$ et (X_n) une suite de matrices de $\mathcal{M}_{n;1}(\mathbb{R})$ avec pour tout n entier $X_{n+1} = AX_n$, alors pour tout n, $X_n = A^n X_0$
- 5. Définition + lister (sans démonstration) des critères d'inversibilité / non inversibilité dans des cas particuliers (définition + dimension 2, matrices diagonales, triangulaires, lignes/colonnes nulles, caractérisation avec $AX = 0 \iff X = 0, AX_1 = AX_2 \iff X_1 = X_2, ...$)
- 6. Inversion à la main d'une matrice 3 × 3

Lycée Joffre Année 2025-2026