Feuille d'exercices n°8

Exercice 7 (En diagonalisant - chaîne de Markov). On considère les suites (a_n) , (b_n) et (c_n) définie sur \mathbb{N}^* par $a_1 = b_1 = c_1 = \frac{1}{3}$ et :

$$\forall n \in \mathbb{N}^*, \begin{cases} a_{n+1} = a_n + \frac{b_n}{2} + \frac{c_n}{3} \\ b_{n+1} = \frac{b_n}{2} + \frac{c_n}{3} \\ c_{n+1} = \frac{c_n}{3} \end{cases}$$

On pose $X_n = \begin{pmatrix} b_n \\ c_n \end{pmatrix}$.

1. Exprimer X_{n+1} en fonction de X_n et d'une matrice $A \in \mathcal{M}_2(\mathbb{R})$ qu'on déterminera.

$$X_{n+1} = \begin{pmatrix} b_{n+1} \\ c_{n+1} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{b_n}{2} + \frac{c_n}{3} \\ \frac{c_n}{3} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} b_n \\ c_n \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{1}{3} \end{pmatrix} X_n$$

$$= AX_n$$

Avec $A := \begin{pmatrix} \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{1}{2} \end{pmatrix}$

2. Exprimer X_n en fonction de n, A et X_1 .

Par récurrence (qu'on a déjà faite plusieurs fois, à savoir faire, mais avec une suite qui s'initialise à n=1 plutôt que n=0) : $\forall n \in \mathbb{N}, X_n = A^{n-1}X_1$

3. (a) On pose $P = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$. Calculer P^{-1} , puis $D = P^{-1}AP$.

Puisque P est de taille 2×2 , on sait calculer son inverse. $\det(P) = 1$ et $P^{-1} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. On en déduit :

$$D = P^{-1}AP$$

$$= \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} & 1 \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{pmatrix}$$

(b) Exprimer alors D^n , puis A^n , en fonction de n.

Puisque D est diagonale : $\forall n \in \mathbb{N}, D^n = \begin{pmatrix} \left(\frac{1}{2}\right)^n & 0\\ 0 & \left(\frac{1}{3}\right)^n \end{pmatrix}$. Par ailleurs, puisque $D = P^{-1}AP$, alors $A = PDP^{-1}$ d'o

$$A^{n} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \left(\frac{1}{2}\right)^{n} & 0 \\ 0 & \left(\frac{1}{3}\right)^{n} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \left(\frac{1}{2}\right)^{n} & -2\left(\frac{1}{3}\right)^{n} \\ 0 & \left(\frac{1}{3}\right)^{n} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \left(\frac{1}{2}\right)^{n} & 2\left(\left(\frac{1}{2}\right)^{n} - \left(\frac{1}{3}\right)^{n}\right) \\ 0 & \left(\frac{1}{3}\right)^{n} \end{pmatrix}$$

4. Déduire des questions précédentes l'expression de
$$b_n$$
 et c_n en fonction de n .

On en déduit : $\forall n \in \mathbb{N}^*, X_n = A^{n-1}X_1 = \begin{pmatrix} \left(\frac{1}{2}\right)^{n-1} & 2\left(\left(\frac{1}{2}\right)^{n-1} - \left(\frac{1}{3}\right)^{n-1}\right) \\ 0 & \left(\frac{1}{3}\right)^{n-1} \end{pmatrix} \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \left(\frac{1}{2}\right)^{n-1} - \frac{2}{3}\left(\frac{1}{3}\right)^{n-1} \\ \left(\frac{1}{3}\right)^{n} \end{pmatrix}$
Ainsi : $\forall n \in \mathbb{N}, h = \left(\frac{1}{2}\right)^{n-1} - 2\left(\frac{1}{2}\right)^{n}$ et $c_n = \left(\frac{1}{2}\right)^{n}$

Ainsi: $\forall n \in \mathbb{N}, b_n = \left(\frac{1}{2}\right)^{n-1} - 2\left(\frac{1}{3}\right)^n$ et $c_n = \left(\frac{1}{3}\right)^n$

5. Montrer que la suite $(a_n + b_n + c_n)$ est constante. En déduire l'expression de a_n en fonction de n. Soit $n \in \mathbb{N}$.

$$a_{n+1} + b_{n+1} + c_{n+1} = a_n + \frac{b_n}{2} + \frac{c_n}{3} + \frac{b_n}{2} + \frac{c_n}{3} + \frac{c_n}{3}$$
$$= a_n + 2 \times \frac{b_n}{2} + 3 \times \frac{c_n}{3}$$
$$= a_n + b_n + c_n$$

Ainsi, la suite $(a_n + b_n + c_n)$ est constante égale à $a_1 + b_1 + c_1 = 1$. On en déduit :

$$\forall n \in \mathbb{N}, a_n = 1 - b_n - c_n = 1 - \left(\frac{1}{2}\right)^{n-1} + 2\left(\frac{1}{3}\right)^n - \left(\frac{1}{3}\right)^n = 1 - \left(\frac{1}{2}\right)^{n-1} + \left(\frac{1}{3}\right)^n$$

6. Calculer les limites de a_n , b_n et c_n lorsque n tend vers $+\infty$.

On trouve : $a_n \to 1, b_n \to 0, c_n \to 0$

Ce genre de suites apparaît naturellement dans un cadre probabiliste.

Exercice 12. Soit $M \in \mathcal{M}_{m,n}(\mathbb{R})$. Montrer que tMM est bien définie et qu'elle est symétrique. t(tMM) = tMt(tM) = tMM (par propriétés de la transposée. Ainsi, tMM est symétrique.

Exercice 13. Soient A et B deux matrices non nulles de $n(\mathbb{R})$ vérifiant AB = 0. Montrer que ni A ni Bn'est inversible.

Supposons par l'absurde que A est inversible. Alors, $A^{-1}AB = A^{-1}0 = 0$ d'où B = 0, ce qui est incohérent. De même, si par l'absurde B est inversible, alors $ABB^{-1} = 0 \times B^{-1} = 0$ d'où A = 0, ce qui est incohérent. Ainsi, ni A ni B n'est inversible.

On peut aussi le montrer avec la propriété 27 du cours (c'est assez équivalent).

Exercice 17. Soit
$$M = \begin{pmatrix} 3 & 1 & \dots & 1 \\ 1 & 3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 3 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

1. Écrire une expression du coefficient (i, j) de M

$$\forall (i,j) \in [|1;n|]^2, M_{ij} = \begin{cases} 3 & \text{si } i = j \\ 1 & \text{sinon} \end{cases}$$

2. Calculer M^2 et l'exprimer en fonction de M et I. Soit $(i, j) \in [|1; n|]$.

$$(M^2)_{i,j} = \sum_{k=1}^n M_{ik} M_{kj}$$

Séparons le cas i=j et le cas $i\neq j$:

Si $i \neq j$:

$$(M^{2})_{i,j} = \sum_{\substack{k=1\\k\neq i, k\neq j}}^{n} M_{i,k} M_{k,j} + M_{i,i} M_{i,j} + M_{i,j} M_{j,j}$$
$$= (n-2) \times 1 \times 1 + 3 \times 1 + 3 \times 1$$
$$= (n-2) + 6$$
$$= n+4$$

— Si
$$i = j$$
:

$$(M^{2})_{i,i} = \sum_{\substack{k=1\\k\neq i}}^{n} M_{i,k} M_{k,i} + M_{i,i} M_{i,i}$$
$$= (n-1) \times 1 \times 1 + 3 \times 3$$
$$= (n-1) + 9$$
$$= n+8$$

On en déduit : $M^2 = (n+4)M - (2n+4)I_n$. En effet, si $i \neq j$,

$$((n+4)M - (2n+4)I_n)_{i,j} = (n+4) \times 1 = n+4$$

et pour tout $i \in [|1, n|]$,

$$((n+4)M - (2n+4)I_n)_{i,i} = 3(n+4) - (2n+4) = 3n+12-2n-4 = n+8$$

3. En déduire que M est inversible et exprimer son inverse en fonction de M et I. $(n+4)M-M^2=(2n+4)I_n$, i.e. $M\times \frac{1}{2n+4}\left((n+4)I_n-M\right)=I_n$ Ainsi, M est inversible et $M^{-1}=\frac{1}{2n+4}\left((n+4)I_n-M\right)$

Exercice 18. Résoudre les équations matricielles suivantes.

1.
$$5\left(X - \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 3 \end{pmatrix}\right) - \left(2X + \begin{pmatrix} 0 & 3 \\ 3 & 7 \\ 0 & 4 \end{pmatrix}\right) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} - 2X$$
, d'inconnue $X \in \mathcal{M}_{3,2}(\mathbb{R})$

Soit $X \in \mathcal{M}_{3,2}(\mathbb{R})$. X peut s'écrire sous la forme $\begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix}$.

On cherche alors à résoudre :

$$\begin{pmatrix} 3a-5 & 3b-13 \\ 3c-3 & 3d-12 \\ 3e-10 & 3f-19 \end{pmatrix} = \begin{pmatrix} 1-2a & 1-2b \\ -2c & 1-2d \\ 1-2e & 1-2f \end{pmatrix}$$

i.e.:
$$\begin{cases} 5a = 6 \\ 5b = 14 \\ 5c = 3 \\ 5d = 13 \\ 5e = 11 \\ 5f = 20 \end{cases}$$

If y a donc une unique solution : $X = \frac{1}{5} \begin{pmatrix} 6 & 14 \\ 3 & 13 \\ 11 & 20 \end{pmatrix}$

2.
$$\begin{pmatrix} 4 & 11 \\ 1 & 3 \end{pmatrix} X + \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -3 & 5 \end{pmatrix}$$
, d'inconnue $X \in \mathcal{M}_2(\mathbb{R})$

De même, pour $X \in \mathcal{M}_2(\mathbb{R})$, introduisons des réels a,b,c,d tels que $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. L'équation étudiée se réécrit :

$$\begin{pmatrix} 4a+11c & 4b+11d \\ a+3c & b+3d \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ -4 & 3 \end{pmatrix}$$

On en déduit :

$$\begin{cases} 4a + 11c = 0 \\ a + 3c = -4 \\ 4b + 11d = 2 \\ b + 3d = 3 \end{cases}$$

Le système se résout en : a=44, b=-27, c=-16, d=10

Trouver toutes les matrices de la forme $A = \begin{pmatrix} a & b \\ a & b \end{pmatrix}$ dont le carré est égal à :

1. La matrice identité

Pour les 3 questions, on commence par calculer : $A^2 = \begin{pmatrix} a^2 + ab & b^2 + ab \\ a^2 + ab & b^2 + ab \end{pmatrix}$ On cherche donc à résoudre : $a^2 + ab = 1$, $a^2 + ab = 0$, $b^2 + ab = 0$, $b^2 + ab = 1$. Les équations étant

incompatibles entre elles, il n'y a pas de solution à cette équation.

2. La matrice nulle

Le problème devient : $a^2 + ab = b^2 + ab = 0$. En particulier, $a^2 = b^2$ donc a, b sont égaux ou opposés. Si a=b, on obtient $2a^2=0$, ce qui impose a=0: dans ce cas A est la matrice nulle. Sinon, a=-bet on a bien $a^2 + ab = 0$ et $b^2 + ab = 0$. Les solutions sont donc toutes les matrices de la forme :

$$A = \begin{pmatrix} a & -a \\ a & -a \end{pmatrix} = a \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$

3. La matrice A

On obtient les deux équations : $a^2 + ab = a$ et $b^2 + ab = b$.

Dans la première équation : $a(a+b-1)=0 \iff a=0$ ou a+b=1. Dans la deuxième de même b=0 ou a+b=1. Les solutions sont donc la matrice nulle et toutes les matrices de la forme

$$A = \begin{pmatrix} a & 1-a \\ a & 1-a \end{pmatrix}$$

Exercice 20. Soient a et b des réels non nuls, et $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. Trouver toutes les matrices $B \in \mathcal{M}_2(\mathbb{R})$ \Diamond qui commutent avec A, c'est-à-dire telles que AB=BA

Cherchons B sous la forme $\begin{pmatrix} c & d \\ e & f \end{pmatrix}$. Alors:

$$AB = \begin{pmatrix} ac + be & ad + bf \\ ae & af \end{pmatrix}$$
 et $BA = \begin{pmatrix} ac & bc + ad \\ ae & be + af \end{pmatrix}$

On en déduit : $AB = BA \iff \begin{cases} be = 0 \\ bc = bf \end{cases} \iff b = 0 \text{ ou } (e = 0 \text{ et } c = f).$ Puisque par hypothèse, b = 0, on en déduit que les matrices qui commutent avec A sont toutes les matrices de la forme $B = \begin{pmatrix} c & d \\ 0 & c \end{pmatrix}$, avec $(c, d) \in \mathbb{R}^2$

Exercice 21 (Nilpotence). Une matrice carrée M est dite nilpotente s'il existe un entier naturel k tel

Soit $A = \begin{pmatrix} -1 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

1. Décomposer A en la somme d'une matrice diagonale D et d'une matrice nilpotente N, en vérifiant

 $A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix} + \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$

On vérifie : $N^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0_3$. Ainsi, N est effectivement nilpotente. Par ailleurs,

$$DN = \begin{pmatrix} 0 & -2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad ; \quad ND = \begin{pmatrix} 0 & -2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = DN$$

2. En déduire, pour tout $n \in \mathbb{N}, A^n$.

Puisque DN = ND, on peut utiliser la formule du binôme de Newton :

$$A^{n} = (D+N)^{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k} N^{k} D^{n-k}$$

$$= \binom{n}{0} N^{0} D^{n} + \binom{n}{1} N^{1} D^{n-1} \operatorname{car} N^{2} = 0$$

$$= D^{n} + nND^{n-1}$$

$$= \binom{(-1)^{n}}{0} \binom{0}{0} \binom{(-1)^{n}}{0} + n \binom{0}{0} \binom{2}{0} \binom{0}{0} \binom{(-1)^{n-1}}{0} \binom{0}{0} \binom{(-1)^{n}}{0} \binom{0}{0} \binom{(-1)^{n}}{0} \binom{0}{0} \binom$$

3. Peut-on étendre ce résultat à $n \in \mathbb{Z}$?

Reformulation : si on prend la matrice définie à la question précédente pour n et -n et qu'on les multiplie, a-t-on la matrice identité? Si oui, alors A^n est inversible, donc A^{-n} a un sens et on a trouvé A^{-n} avec la même formule : le résultat s'étend à \mathbb{Z} . Sinon, la réponse est non. Vérifions : Soit $n \in \mathbb{N}$.

$$\begin{pmatrix} (-1)^n & 2n(-1)^{n-1} & 0\\ 0 & (-1)^n & 0\\ 0 & 0 & 3^n \end{pmatrix} \begin{pmatrix} (-1)^{-n} & -2n(-1)^{-n-1} & 0\\ 0 & (-1)^{-n} & 0\\ 0 & 0 & 3^{-n} \end{pmatrix} = \begin{pmatrix} (-1)^0 & -2n(-1)^{-1} + 2n(-1)^{-1} & 0\\ 0 & (-1)^0 & 0\\ 0 & 0 & 3^0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$
$$= I_2$$

Ainsi, le résultat s'étend à $n \in \mathbb{Z}$.

Exercice 22 (Matrices stochastiques). Une matrice carrée est dite stochastique si tous ses coefficients sont positifs et que la somme des coefficients de chaque ligne vaut 1

1. Donner des exemples (variés) de matrices stochastiques de taille 2 ou 3 Pas de bonne réponse ici, mais on peut prendre par exemple :

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}, \begin{pmatrix} \frac{1}{4} & \frac{3}{4} \\ \frac{4}{5} & \frac{1}{5} \end{pmatrix}$$

2. Montrer, d'abord en taille 2 puis en général, que le produit de deux matrices stochastiques est une matrice stochastique.

En dimension 2, deux matrices stochastiques s'écrivent :

$$A = \begin{pmatrix} a & 1-a \\ b & 1-b \end{pmatrix} \quad ; \quad B = \begin{pmatrix} c & 1-c \\ d & 1-d \end{pmatrix}$$

avec $a, b, c, d \in [0; 1]$. Alors,

$$AB = \begin{pmatrix} ac + (1-a)d & (1-c)a + (1-a)(1-d) \\ bc + (1-b)d & b(1-c) + (1-b)(1-d) \end{pmatrix}$$

Puisque $a, b, c, d \in [0; 1]$, alors tous les coefficients sont des sommes de produits de nombres positifs et sont donc positifs. Par ailleurs,

$$ac + (1-a)d + (1-c)a + (1-a)(1-d) = ac + d - ad + a - ac + 1 - a - d + ad = 1$$

$$bc + (1-b)d + b(1-c) + (1-b)(1-d) = bc + d - bd + b - bc + 1 - b - d + bd = 1$$

Ainsi, AB est stochastique.

Passons en dimension quelconque. On prend $A = (a_{ij}), B = (b_{ij}) \in \mathcal{M}_n(\mathbb{R})$ deux matrices stochastiques. Alors, pour tout $(i,j) \in [|1,n|]^2$,

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

 $(AB)_{ij}$ est positif comme somme de produits de nombres positifs. Par ailleurs, pour tout $i \in [|1; n|]$, la somme les coefficients sur la ligne i est :

$$\sum_{j=1}^{n} (AB)_{ij} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{n} a_{ik} b_{kj}$$

$$= \sum_{k=1}^{n} \left(a_{ik} \sum_{j=1}^{n} b_{kj} \right)$$

$$= \sum_{k=1}^{n} a_{ik} \times 1 \text{ car } B \text{ est stochastique}$$

$$= 1 \text{ car } A \text{ est stochastique}$$

Ainsi, AB est stochastique.

Exercice 23 (Matrices à diagonale dominante - lemme d'Hadamard). Soit n > 2 et $A \in \mathcal{M}_n(\mathbb{R})$ telle que pour tout $i \in [|1, n|]$,

$$|a_{i,i}| > \sum_{j \neq i} |a_{i,j}|$$

Montrer par l'absurde que A est inversible.

Indication : Considérer une matrice colonne $X \neq 0$ telle que AX = 0 et i_0 un indice tel que $|X_{i_0}|$ soit maximal.

En suivant l'indication, supposons par l'absurde que A n'est pas inversible. Il existe alors une matrice colonne $X \neq 0$ telle que AX = 0 (prop. 27 du cours)

Puisque $X \neq 0$, il existe un indice i_0 tel que $|X_{i_0}|$ soit maximal et alors $|X_{i_0}| \neq 0$.

Petite remarque : puisque X n'a qu'une colonne, on s'autorise à écrire X_{i_0} plutôt que $X_{i_0,1}$ Alors,

$$(AX)_{i_0} = \sum_{k=1}^{n} A_{i_0,k} X_k = 0$$

En isolant le terme pour $k = i_0$, on obtient :

$$\sum_{\substack{k=1\\k\neq i_0}}^n A_{i_0,k} X_k = -A_{i_0,i_0} X_{i_0}$$

On en déduit :

$$\left| \sum_{\substack{k=1\\k\neq i_0}}^{n} A_{i_0,k} X_k \right| = |A_{i_0,i_0} X_{i_0}|$$

Or, par inégalité triangulaire,

$$\left| \sum_{k \neq i_0} A_{i_0,k} X_k \right| \leq \sum_{k \neq i_0} |A_{i_0,k}| |X_k| \leq \sum_{k \neq i_0} |A_{i_0,k}| |X_{i_0}| \text{ car } |X_{i_0}| \text{ est maximal}$$

On en déduit en divisant par $|X_{i_0}|$ (qui est strictement positif) :

$$|A_{i_0,i_0}| \le \sum_{k \ne i_0} |A_{i_0,k}|$$

ce qui est incompatible avec l'hypothèse. Ainsi, il y a une contradiction et A est inversible.