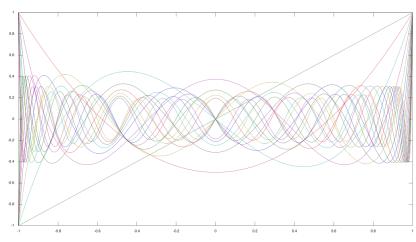
Devoir Maison n°8 - Deux familles de polynômes

Polynômes de Legendre



On s'intéresse à une famille de polynômes appelés **polynômes de Legendre** définis pour tout $n \in \mathbb{N}$ par $P_n(x) = ((x^2 - 1)^n)^{(n)}$ (c'est-à-dire $(x^2 - 1)^n$ dérivé n fois).

Remarque culturelle : ces polynômes, qui sont les solutions d'une famille d'équations différentielles, sont utilisées en calcul numérique pour approximer des intégrales.

- I. Calculer P_0, P_1, P_2
- 2. Déterminer pour tout n le degré de P_n .
- 3. Montrer que le coefficient dominant de P_n est $\frac{(2n)!}{n!}$
- 4. Pour $0 \le p \le n$, on pose $Q_p(x) = ((x^2 1)^n)^{(p)}$. Quel est le degré de Q_p ? Démontrer que Q_p admet deux racines d'ordre n p et p racines d'ordre 1. Toutes ces racines sont dans [-1; 1]
- 5. En déduire que P_n s'annule exactement en n points deux à deux distincts de]-1;1[.
- 6. Quelle est la forme factorisée de P_n ?

Exercice 2 - polynômes de Tchebychev

On considère la suite (T_n) de polynômes définie par :

$$\begin{cases} \forall x \in \mathbb{R}, \ T_0(x) = 1, \ T_1(x) = x \\ \forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ T_{n+2}(x) = 2xT_{n+1}(x) - T_n(x) \end{cases}$$

Remarque culturelle: ces polynômes sont utilisés pour l'interpolation polynômiale (faire passer une fonction polynômiale par un ensemble de points). D'autres familles de polynômes ont des applications en physique ou en calcul numérique: polynômes de Laguerre, polynôme d'Hermite, . . .

- I. Expliciter T_2 , T_3 et T_4 .
- 2. Déterminer le coefficient dominant et le degré de T_n .
- 3. Montrer: $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ \cos(nx) = T_n(\cos x).$
- 4. En déduire que T_n a n racines distinctes, toutes dans]-1,1[.
- 5. Quelle est la forme factorisée de T_n ?
- 6. Montrer par récurrence :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, (1 - x^2)T_n^{(2)}(x) - xT_n'(x) + n^2T_n(x) = 0$$