Devoir Maison n°7 - Diagonalisation d'une matrice : étude de suites et équations différentielles

Trois suites

Soient
$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 et $A = \begin{pmatrix} 2 & -4 & 3 \\ -3 & 3 & -3 \\ -2 & 4 & -3 \end{pmatrix}$.

- I. (a) Montrer que P est inversible et donner P^{-1}
 - (b) Calculer $D = PAP^{-1}$
 - (c) En déduire pour tout $n \in \mathbb{N}^*$ une expression de A^n .
- 2. Dans cette question on étudie des suites réelles $(x_n),(y_n)$ et (z_n) qui vérifient les relations de récurrence :

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = 2x_n - 4y_n + 3z_n \\ y_{n+1} = -3x_n + 3y_n - 3z_n \\ z_{n+1} = -2x_n + 4y_n - 3z_n \end{cases}$$

Pour
$$n\in\mathbb{N}$$
, on pose $X_n=egin{pmatrix} x_n \ y_n \ z_n \end{pmatrix}\in\mathcal{M}_{3;1}(\mathbb{R}).$

- I. Vérifier: $\forall n \in \mathbb{N}, X_{n+1} = Ax_n$
- 2. En déduire une relation entre X_n , A et X_0 .
- 3. Exprimer x_n, y_n, z_n en fonction des réels x_0, y_0, z_0
- 4. À quelle condition (nécessaire et suffisante) sur les réels x_0, y_0, z_0 la suite (x_n) converge-t-elle?

Équations différentielles

I. On rappelle que pour $a \in \mathbb{R}$, l'équation y' = ay, d'inconnue y dérivable sur \mathbb{R} , admet pour solutions toutes les fonctions de la forme $y : x \mapsto \lambda \times e^{ax}$.

Dans cette question, on cherche les fonctions x, y, z dérivables sur \mathbb{R} et à valeurs dans \mathbb{R} vérifiant :

$$\forall t \in \mathbb{R}, \begin{cases} x'(t) = 2x(t) - 4y(t) + 3z(t) \\ y'(t) = -3x(t) + 3y(t) - 3z(t) \\ z'(t) = -2x(t) + 4y(t) - 3z(t) \end{cases}$$

Pour
$$t\in\mathbb{R}$$
, on pose $X(t)=egin{pmatrix} x(t) \ y(t) \ z(t) \end{pmatrix}\in\mathcal{M}_{3;1}(\mathbb{R})$ et $Y(t)=PX(t)$

- (a) Vérifier : $\forall t \in \mathbb{R}, Y'(t) = PX'(t)$
- (b) En déduire : $(\forall t \in \mathbb{R}, X'(t) = AX(t)) \iff (\forall t \in \mathbb{R}, Y'(t) = DY(t))$
- (c) On note $Y(t) = \begin{pmatrix} \alpha(t) \\ \beta(t) \\ \gamma(t) \end{pmatrix}$. En supposant Y'(t) = DY(t), donner une expression de $\alpha(t), \beta(t), \gamma(t)$
- (d) Justifier que $X(t) = P^{-1}Y(t)$ est une solution du système différentiel et initial et donner une expression de x(t), y(t), z(t)