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Devoir Maison n°8 - Deux familles de polynômes

Polynômes de Legendre

On s’intéresse à une famille de polynômes ap-
pelés polynômes de Legendre définis pour
tout n ∈ N par Pn(x) = ((x2 − 1)n)(n)

(c’est-à-dire (x2 − 1)n dérivé n fois).

Remarque culturelle : ces polynômes, qui sont
les solutions d’une famille d’équations différen-
tielles, sont utilisées en calcul numérique pour
approximer des intégrales.

1. Calculer P0, P1, P2

P0(x) = 1, P1(x) = (x2 − 1)′ = 2x, P2(x) = ((x2 − 1)2)′′ = (x4 − 2x2 + 1)′′ = (4x3 − 4x)′ = 12x2 − 4
Remarque : on s’autorise à la notation ′ autour d’une expression du fait de la confusion pour les polynômes entre P et P (x)

2. Déterminer pour tout n le degré de Pn.
Pour tout entier n, du fait de la propriété sur le degré d’un produit de polynôme, le degré de (x2 − 1)n est 2n. En dérivant n
fois, on perd n degrés : deg(Pn) = 2n− n = n

3. Montrer que le coefficient dominant de Pn est (2n)!
n!

Le coefficient dominant de (x2−1)n est 1 : ce polynôme est donc de la formex2n+Q(x) oùQ a un degré strictement inférieur
à 2n. Montrons par récurrence qu’alors après k dérivations, on obtient (2n)!

(2n−k)!x
2n−k+Qk(x) oùQk est de degré strictement

inférieur à 2n− k.

— Initialisation : pour n = 0, on dérive 0 fois, et on a déjà montré cette forme avecQ0 = Q et (2n)!
(2n−0)! = 1

— Hérédité : soit k ∈ [|0;n− 1|] vérifiant cette formule. Alors,

((x2 − 1)n)(k+1) =

(
(2n)!

(2n− k)!
x2n−k +Qk(x)

)′

=
(2n)!

(2n− k)!
(2n− k)x2n−k−1 +Q′

k(x)

=
(2n)!

(2n− (k + 1))!
x2n−(k+1) +Qk+1(x)

oùQk+1 = Q′
k. deg(Qk) < 2n− k donc deg(Q′

k) = deg(Qk)− 1 < 2n− k − 1 = 2n− (k + 1)
Ainsi, la récurrence est établie.

— Conclusion : pour tout k ∈ [|0;n|], ((x2 − 1)n)(k) = (2n)!
(2n−k)!x

2n−k +Qk(x) avec deg(Qk) < 2n− k. Pour k = n,
on obtient donc Pn = ((x2 − 1)n)(n) = (2n)!

(2n−n)!x
2n−n +Qn.

Puisque deg(Qn) < n, alors le coefficient dominant est (2n)!
n!

4. Pour 0 ≤ p ≤ n, on poseQp(x) = ((x2 − 1)n)(p). Quel est le degré deQp ? Démontrer queQp admet deux racines d’ordre
n− p et p racines d’ordre 1. Toutes ces racines sont dans [−1; 1]
Avec le résultat de la question précédente, on sait que deg(Qp) = 2n− p.
Démontrons le résultat précédent par récurrence sur p en utilisant le théorème de Rolle.

— Initialisation : pour p = 0, on aQ0(x) = (x2 − 1)n = (x− 1)n(x+ 1)n.Q0 a deux racines d’ordre n (1 et−1) et n’a
pas d’autres racines. La propriété est donc initialisée.

— Hérédité : soit p ∈ [|0;n− 1|] tel queQp = ((x2 − 1)n)(p) ait deux racines, 1 et−1, d’ordre n− p, et p autres racines
x1 < x2 < . . . < xp entre−1 et 1.
Par définitionde lamultiplicité, puisqueQp+1 = Q′

p, alors1 et−1 sont des racines demultiplicitén−p−1 = n−(p+1).
Intéressons-nous maintenant aux autres racines. Posons x0 = −1 et xp+1 = 1
Sur chaque intervalle [xi;xi+1] pour i ∈ [|0; p|], on aQp un polynôme dérivable, vérifiantQp(xi) = Qp(xi+1) = 0.
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D’après le théorème de Rolle, il existe donc ci tel queQ′
p(ci) = Qp+1(ci) = 0.

Puisqu’il y a p+ 1 tels intervalles, tous disjoints, donc p+ 1 valeurs c0, . . . , cp, alorsQp+1 a p+ 1 racines simples dans
[−1; 1]. La récurrence est ainsi établie.

— Conclusion : pour tout p ∈ [|0;n|],Qp a deux racines (1 et−1) d’ordre n− p et p racines simples dans ]− 1; 1[.
5. En déduire que Pn s’annule exactement en n points deux à deux distincts de ]− 1; 1[.

D’après la question précédente, puisque Pn = Qn, Pn admet 2 racines d’ordre n− n = 0 et n racines simples dans ]− 1; 1[.
C’est donc exactement le résultat demandé.

6. Quelle est la forme factorisée de Pn ?
Puisqu’on connaît le coefficient dominant de Pn, et que Pn admet n racines simples x1, . . . , xn, alors :

Pn =
(2n)!

n!

n∏
i=1

(x− xi)

C’est un produit de polynômes de degré 1, donc irréductibles : c’est donc la forme factorisée (au maximum) de Pn.
Remarque : on dit que Pn est «scindé à racines simples»

Exercice 2 - polynômes de Tchebychev
On considère la suite (Tn) de polynômes définie par :{

∀x ∈ R, T0(x) = 1, T1(x) = x
∀n ∈ N, ∀x ∈ R, Tn+2(x) = 2xTn+1(x)− Tn(x)

1. Expliciter T2, T3 et T4.

T2(x) = 2xT1(x)− T0(x) = 2x2 − 1

T3(x) = 2xT2(x)− T1(x) = 2x(2x2 − 1)− x = 4x3 − 3x

T4(x) = 2xT3(x)− T2(x) = 2x(4x3 − 3x)− (2x2 − 1) = 8x4 − 8x2 + 1

2. Déterminer le coefficient dominant et le degré de Tn.
Au vu des résultats précédents, on peut faire la conjecture suivante : deg(Tn) = n et CD(Tn) = 2n−1 (pour n ≥ 1).
Montrons-le par récurrence double.
(a) Initialisation : pour n = 1, n = 2, le résultat se vérifie aisément.
(b) Hérédité : soitn ∈ N tel que la propriété soit vraie au rangn et au rangn+1. Alors, puisqueTn+2 = 2xTn+1−Tn(x),

et que deg(Tn) < deg(Tn+1),

deg(Tn+2) = deg(2x) + deg(Tn+1) = 1 + (n+ 1) = n+ 2

Par ailleurs, puisque le seul coefficient de degrén+2 vient du calcul2x×Tn+1,CD(Tn+2) = 2CD(Tn+1) = 2×2n =
2n+1 et la récurrence est établie.

3. Montrer : ∀n ∈ N, ∀x ∈ R, cos(nx) = Tn(cosx).
Par récurrence double.
(a) Pour n = 0 et x ∈ R, cos(0x) = 1 = T0(cos(x)) et cos(1x) = cos(x) = T1(cos(x)).
(b) Soit n ∈ N tel que cos(nx) = Tn(cos(x)) et cos((n+ 1)x) = Tn+1(cosx). Alors :

cos((n+ 2)x) = cos((n+ 1)x+ x)

= cos((n+ 1)x) cos(x)− sin((n+ 1)x) sin(x)

Par ailleurs,

cos(nx) = cos((n+ 1)x− x)

= cos((n+ 1)x) cos(x) + sin((n+ 1)x) sin(x)

i.e. sin((n+ 1)x) sin(x) = cos(nx)− cos((n+ 1)x) cos(x)Ainsi,

cos((n+ 2)x) = cos((n+ 1)x) cos(x)− (cos(nx)− cos((n+ 1)x) cos(x))
= 2 cos((n+ 1)x) cos(x)− cos(nx)
= 2 cos(x)Tn+1(cos(x))− Tn(cos(x)) par hypothèse de récurrence
= Tn+2(cosx)

Ainsi, cos((n+ 2)x) = Tn+2(cosx) et la récurrence est établie.
On pouvait aussi, dans l’autre sens, partir de la définition de Tn+2(cosx) et remonter les calculs.
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4. En déduire que Tn a n racines distinctes, toutes dans ]− 1, 1[.

cos(nx) = 0 ⇐⇒ ∃k ∈ Z, nx =
π

2
+ kπ

⇐⇒ ∃k ∈ Z, x =
π

2n
+

k

n
π

Or, pour k = 0, . . . , n−1 les x de la forme précédente ont des cosinus différents (tous les x sont distincts entre π
2n et π

2n +π).
Alors, {cos

(
π
2n + k

n

)
|k ∈ [|0;n − 1|]} est l’ensemble des racines de Tn et ces nombres sont tous distincts et à valeurs dans

]− 1; 1[ (puisque ce sont des cosinus de nombres qui ne sont pas des multiples de π) : il y a n racines distinctes d’un polynôme
de degré n donc ce sont les seules.

5. Factoriser Tn.
D’après la question précédente, Tn a n racines distinctes α1, . . . , αn et le coefficient dominant de Tn est 2n donc :

Tn = 2n(x− α1)(x− α2) . . . (x− αn) = 2n
n∏

k=1

(x− αk)

6. Montrer par récurrence :
∀n ∈ N, ∀x ∈ R, (1− x2)T (2)

n (x)− xT ′
n(x) + n2Tn(x) = 0

Sans récurrence : on note ϕn = Tn ◦ cos et d’après la question 3, ϕn(x) = cos(nx). Les deux membres de l’égalité sont des
fonctions deux fois dérivables et on obtient pour tout x ∈ R :

ϕ′
n(x) = − sin(x)T ′

n(cos(x)) = −n sin(nx)

puis :
ϕ′′
n(x) = sin2(x)T ′′

n (cos(x))− cos(x)T ′
n(cos(x)) = −n2 cos(nx)

On obtient donc :
sin2(x)T ′′

n (cos(x))− cos(x)T ′
n(cos(x)) + n2Tn(cos(x)) = 0

Puisque sin2(x) = 1−cos2(x), on retrouve quasiment la formule voulue,mais seulement pour les nombres de la forme cos(x).
Puisque x cos(x) prend une infinité de valeurs, le polynôme (1− x2)T

(2)
n − xT ′

n + n2Tn a une infinité de racines et est donc
nul. Ainsi pour tout réel x,

(1− x2)T (2)
n (x)− xT ′

n(x) + n2Tn(x) = 0


