Quelques corrigés

Exercice 3 - inégalités

1. Montrer: $\forall x \in \mathbb{R}_+, \quad x \geqslant 2\sqrt{x} - 1$

Option 1: on remarque que $x \ge 2\sqrt{x} - 1 \Leftrightarrow x - 2\sqrt{x} + 1 \ge 0 \Leftrightarrow (\sqrt{x} - 1)^2 \ge 0$ ce qui est vrai dès lors que \sqrt{x} est défini, i.e. pour tout $x \ge 0$ Option 2: sinon on peut effectuer des manipulations « classiques » Soit $x \in \mathbb{R}_+$, alors $x \ge 2\sqrt{x} - 1 \Leftrightarrow x + 1 \ge 2\sqrt{x} \Leftrightarrow (x + 1)^2 \ge 4x$

d'une part $x+1 \ge 2\sqrt{x} \Rightarrow (x+1)^2 \ge 4x$ car la fonction carré est croissante sur \mathbb{R}_+ d'autre part $(x+1)^2 \ge 4x \Rightarrow \sqrt{(x+1)^2} \ge \sqrt{4x}$ car $x \ge 0$ et la fonction racine carrée est croissante sur \mathbb{R}_+ et de plus $\sqrt{(x+1)^2} = |x+1| = x+1$ car $x \ge 0$ et $\sqrt{4x} = \sqrt{4}\sqrt{x} = 2\sqrt{x}$ donc pour $x \geqslant 0, x \geqslant 2\sqrt{x-1} \Leftrightarrow x^2+2x+1 \geqslant 4x \Leftrightarrow x^2-2x+1 \geqslant 0 \Leftrightarrow (x-1)^2 \geqslant 0$ ce qui est vrai donc $\forall x \in \mathbb{R}_+, x \geqslant 2\sqrt{x} - 1$

2. Montrer: $\forall x \in \mathbb{R}, \quad |x-1| \leqslant x^2 - x + 1$

Il est important de justifier la dernière équivalence :

Option 1 : en remarquant que $\forall x \in \mathbb{R}, x^2 - x + 1 \ge 0$ (car le discriminant de $x^2 - x + 1$ est négatif et a > 0, on utilise alors que pour tout $\alpha \ge 0, |x| \le \alpha \Leftrightarrow -\alpha \le x \le \alpha$ soit $x \in \mathbb{R}$, alors $|x-1| \leqslant x^2 - x + 1 \Leftrightarrow -(x^2 - x + 1) \leqslant x - 1 \leqslant x^2 - x + 1$ $\Leftrightarrow -x^2 + x - 1 \leqslant x - 1 \leqslant x^2 - x + 1 \Leftrightarrow -x^2 \leqslant 0 \leqslant x^2 - 2x + 2$ comme $-x^2 \le 0$ est toujours vérifié $|x-1| \le x^2 - x + 1 \Leftrightarrow 0 \le x^2 - 2x + 2$ or le discriminant de $x^2 - 2x + 2$ est strictement négatif (il vaut -4) et a > 0donc $\forall x \in \mathbb{R}, x^2 - 2x + 2 \ge 0$

donc l'inégalité étant équivalente à une inégalité qui est vérifiée pour tout x réel, elle est également vérifiée pour tout x réel.

Option 2: on distingue 2 cas, $x \ge 1$ (alors $x-1 \ge 0$ et |x-1| = x-1) et $x \le 1$ (alors $x-1 \le 0$ $\overline{\text{et }|x-1|}=-(x-1)$) puis dans chaque cas, on se ramène à une inégalité qui est toujours vraie.

Exercice 5 - quelle chance! encore un raisonnement par ...

Démontrer que, pour tout $n \in \mathbb{N}^*$, on a $2^{n-1} \leq n! \leq n^n$.

Pour $n \in \mathbb{N}^*$, on définit l'assertion $P(n): 2^{n-1} \leq n! \leq n^n$ Initialisation : P(1) est vraie $\Leftrightarrow: 2^{1-1} \leqslant 1! \leqslant 1^1 \Leftrightarrow 1 \leqslant 1 \leqslant 1$ $\overline{\text{ce qui est vrai}}$, donc P(1) est vraie.

<u>Hérédité</u>: soit $n \in \mathbb{N}^*$, supposons que P(n) est vraie alors par hypothèse $2^{n-1} \leqslant n! \leqslant n^n$ et il est plus facile de séparer l'inégalité pour la suite d'une part $2^{n-1} \leqslant n! \Rightarrow 2 \times 2^{n-1} \leqslant 2 \times n!$ i.e. $2^n \leqslant 2n!$ or $n \ge 1$ donc $n+1 \ge 2$ et donc $(n+1)n! \ge 2n!$ i.e. $(n+1)! \ge 2n!$ donc $2^n \leq (n+1)!$ d'où la première partie de l'inégalité d'autre part, $n! \leqslant n^n \Rightarrow (n+1) \times n! \leqslant (n+1) \times n^n$ i.e. $(n+1)! \leqslant (n+1)n!$ or $n^n \leq (n+1)^n$ donc $(n+1)n^n \leq (n+1)(n+1)^n$ i.e. $(n+1)n^n \leq (n+1)^{n+1}$ et donc $(n+1)! \leq (n+1)^{n+1}$ d'où l'autre partie de l'inégalité

donc P(n+1) est vraie, d'où l'hérédité.

donc par théorème de récurrence, $\forall n \in \mathbb{N}, P(n)$ est vraie.

Exercice 8 - une équation avec des racine carrées, deux raisonnements possibles

Au brouillon, déterminer les réels x tels que $\sqrt{x+2} = x$. En déduire une rédaction :

• par analyse-synthèse,

Analyse: soit x solution alors $\sqrt{x+2}=x$ et donc $(\sqrt{x+2})^2=x^2$ soit $x+2=x^2$ donc x est solution de x^2-x-2 qui admet pour racines évidentes -1 et 2 donc $\mathscr{S}\subset\{-1;2\}$ Synthèse: -1 n'est pas solution (-1 ne peut être le résultat d'une racine) par contre 2 est solution puisque $\sqrt{2+2}=2$ Finalement $\mathscr{S}=\{2\}$

• par équivalence.

On peut commencer par remarquer que si x est négatif alors x ne peut être solution (car cela ne peut pas être le résultat d'une racine carrée)

donc les solutions sont à rechercher parmi les réels positifs.

Soit $x \ge 0$, alors $\sqrt{x+2} = x \Leftrightarrow (\sqrt{x+2})^2 = x^2$

L'équivalence est bien vérifiée puisque $(\sqrt{x+2})^2=x^2\Rightarrow\sqrt{(\sqrt{x+2})^2}=\sqrt{x^2}\Rightarrow\sqrt{x+2}=|x|\Rightarrow\sqrt{x+2}=x$ car $x\geqslant 0$

puis en poursuivant l'équivalence, on trouve comme plus haut $\sqrt{x+2}=x\Leftrightarrow\cdots\Leftrightarrow x=-1$ ou $x=2\Leftrightarrow x=2$ car $x\geqslant 0$

Exercice 9 - deux raisonnements par \dots

Montrer que :

a) $\forall n \in \mathbb{N}^*$, 4 divise n^2 ou 4 divise $n^2 - 1$.

 $\frac{1^{\text{er}} \cos : n \text{ est pair}}{\text{alors } \exists p \in \mathbb{N}^*, n = 2p \text{ et donc } n = 4p^2 \text{ donc } 4 \text{ divise } n$

 $\underline{2^{\text{ème}} \text{ cas}}$: si n est impair alors $\exists p \in \mathbb{N}^*, n = 2p + 1,$ $donc n^2 = 4p^2 + 4p + 1 \ donc n^2 - 1 = 4p^2 + 4p = 4(p^2 + p), \ donc 4 \ divise n^2 - 1$

b) $\forall x \in \mathbb{R}, x^3 + x^2 - 12x = 0 \Rightarrow |x| < 5$

Soit $x \in \mathbb{R}$, tel que $x^3 + x^2 - 12x = 0$ alors $x(x^2 + x - 12) = 0$ donc x = 0 ou $x^2 + x - 12 = 0$ or $x^2 + x - 12$ admet pour racines -4 et 3 finalement x = 0 ou x = -4 ou x = 3 donc dans tous les cas |x| < 5

Exercice 10 - une équation fonctionnelle, un raisonnement par ...

Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que, pour tous $x, y \in \mathbb{R}$,

$$f(x) \times f(y) - f(x \times y) = x + y.$$

Exercice plus difficile que l'on va résoudre par anlyse-synthèse.

Analyse: soit f une telle fonction, alors $\forall x, y \in \mathbb{R}$, $f(x) \times f(y) - f(x \times y) = x + y$ en particulier (pour x = 0 et y = 0), on trouve $f(0)^2 - f(0) = 0$ i.e f(0)(f(0) - 1) = 0 donc f(0) = 0 ou f(0) = 1

 $\underline{1}^{\text{er}} \underline{\text{cas}} : f(0) = 0$, alors $\forall x \in \mathbb{R}, f(x)f(0) - f(x \times 0) = x + 0 \Leftrightarrow x = 0$ ce qui est faux donc f(0) ne peut être égal à 0

 $\underline{2^{\text{ème}} \text{ cas}}$: f(0) = 1, alors $\forall x \in \mathbb{R}$, $f(x)f(0) - f(x \times 0) = x + 0$ i.e $f(x) \times 1 + 1 = x$ et donc dans ce cas f(x) = x + 1

il y a donc une seule fonction candidate : $x \mapsto x + 1$

Exercice 11 - quelques raisonnements par ...

b) Montrer que pour tout
$$n \in \mathbb{N}^*$$
, $\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{n \times (n+1)} = \frac{n}{n+1}$.

Dans un premier temps, on peut écrire
$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \cdots + \frac{1}{n\times (n+1)} = \sum_{k=1}^{n} \frac{1}{k(k+1)}$$

puis pour
$$n \in \mathbb{N}^*$$
, on définit la propriété $P(n): \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{n}{n+1}$

$$\underline{\text{Initialisation}}: P(1) \text{ est vrai } \Leftrightarrow \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{1+1} \text{ ce qui est vrai } \text{car } \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{1\times 2} = \frac{1}{2}$$

<u>Hérédité</u> : soit $n \in \mathbb{N}^*$, supposons que P(n) est vraie

par relation de Chasles,
$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{1}{k(k+1)} + \frac{1}{(n+1)(n+2)}$$

or par hypothèse de récurrence
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$
 donc $\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$

donc
$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n^2+2n+1}{(n+1)(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2}$$

donc P(n+1) est vraie, d'où l'hérédité

donc par théorème de récurrence, $\forall n \in \mathbb{N}, P(n)$ est vraie.

Exercice 12 - un raisonnement par ...

On pose $F_0 = F_1 = 1$ et pour $n \ge 0, F_{n+2} = F_n + F_{n+1}$. Montrer que pour tout $n \in \mathbb{N}, F_n \ge n$

Il faut ici procéder par récurrence double (ce que nous n'avons pas vu), c'est-à-dire qu'il faut faire l'initialisation pour deux valeurs consécutives, puis dans l'hérédité, on utilise l'hypothèse de récurrence pour deux rangs consécutifs (n et n+1).

Pour $n \in \mathbb{N}$, on définit la propriété $P(n): F_n \geqslant n$

<u>Initialisation</u>: $F_0 \ge 0$ et $F_1 \ge 1$ donc P(0) et P(1) sont vraies.

<u>Hérédité</u> : soit $n \in \mathbb{N}$, on suppose que P(n) et P(n+1) sont vraies

alors par hypothèse $F_n \geqslant n$ et $F_{n+1} \geqslant n+1$

donc $F_n + F_{n+1} \ge n + n + 1$ i.e. $F_n + F_{n+1} \ge 2n + 1$

 $\underline{1^{\text{er}} \text{ cas}}$: si $n \ge 1$ alors $2n+1 \ge n+2$ et donc $F_n+F_{n+1} \ge n+2$, c'est-à-dire que P(n+1) est vérifiée $\underline{2^{\text{ème}} \text{ cas}}$: si n=0, alors $F_2=2$ donc P(2) est vérifiée

Finalement dans tous les cas, P(n+1) est vérifiée d'où l'hérédité

donc par théorème de récurrence (double), $\forall n \in \mathbb{N}, P(n)$ est vraie.

Exercice 13 - équation à paramètre, raisonnement par...

Résoudre dans \mathbb{R} les équation d'inconnue x, en discutant en fonction des valeurs du paramètre réel m:

a)
$$m^2x + 3 = m + 9x$$

Soit $m \in \mathbb{R}$ et $x \in \mathbb{R}$, alors $m^2x + 3 = m + 9x \Leftrightarrow m^2x - 9x = m - 3 \Leftrightarrow (m^2 - 9)x = m - 3$ 1^{er} cas : m = -3 alors $(m^2 - 9)x = 0$ et m - 3 = -6 donc l'équation n'est jamais vérifiée.

 $\underline{2^{\text{\'eme}} \text{ cas}}: m=3 \text{ alors } (m^2-9)x=0 \text{ et } m-3=0 \text{ donc } (m^2-9)x=m-3 \text{ (indépendant de la valeur de } x)$ et donc l'équation est toujours vérifiée.

$$\underline{3^{\text{ème}} \text{ cas}} : m^2 - 9 \neq 0 \text{ alors } x = \frac{m-3}{m^2 - 9} = \frac{m-3}{(m-3)(m+3)} = \frac{1}{m+3}$$

b)
$$mx^2 - mx + 2 = 0$$

Dès lors que $m \neq 0$, il s'agit de trouver les racines d'un trinôme du second degré, on commence donc par chercher l'existence de racines : $\Delta = (-m)^2 - 4 \times m \times 2 = m^2 - 8m = m(m-8)$, il s'agit donc d'un polynôme (en m) du second degré dont les racines sont 0 et 8

 $\underline{1^{\mathrm{er}} \ \mathrm{cas}} : m \in]0,8[$ alors $\Delta < 0$ et donc l'équation n'admet aucune solution.

 $\underline{2^{\text{ème}} \text{ cas}} : m = 0$ l'équation n'est plus une équation du second degré, elle devient 2 = 0, ce qui n'est jamais vérifié

$$\underline{3^{\text{ème}} \text{ cas}} : m = 8 \text{ alors } \Delta = 0 \text{ et donc le trinôme admet une seule racine} : x_0 = \frac{m}{2m^2} = \frac{1}{2m}$$

$$\frac{4^{\text{ème}} \text{ cas}: m \in]-\infty, 0[\cup]8, +\infty[\text{ alors } \Delta > 0 \text{ donc le trinôme admet deux racines}}{x_1 = \frac{m-\sqrt{m^2-8m}}{2m} = \frac{1}{2} - \frac{\sqrt{m^2-8m}}{2m} \text{ et } x_2 = \frac{1}{2} + \frac{\sqrt{m^2-8m}}{2m}}$$