\Box 6

Eléments de corrigé

 \boxtimes 0

1.	On effectue une expérience aléatoire qui consiste à lancer 3 dés. On note X la variable aléatoire
	qui correspond au nombre de dés dont le résultat est 1
	Quelles sont les valeurs possibles pour X ?

 \boxtimes 3

 \Box 4

 \Box 5

2. Avec les mêmes hypothèses, que vaut P(X=3)?

 \boxtimes

 \boxtimes 1

Avec des notations ad hoc, $P(X=3)=P(\{D_1=1\}\cap\{D_2=1\}\cap\{D_3=1\})$ donc $P(X=3)=P(D_1=1)P(D_2=1)P(D_3=1)$ (car les trois lancers sont mutuellement indépendants), donc $P(X=3)=\left(\frac{1}{6}\right)^3=\frac{1}{216}$

3. On dispose d'une urne contenant n boules blanches et une boule noire. On effectue des tirages sans remise, et on note X la variable aléatoire correspondant au rang du tirage au cours duquel apparaît la boule noire. Quelle est la valeur maximale prise par X?

C'est n+1, qui correspond au cas où on tire une boule blanche lors des n premiers tirages et la boule noire au $n+1^{\text{ième}}$.

4. Au début d'un match de handball (7 joueurs par équipe), un arbitre lance un dé (classique) et expulse autant de joueurs que le résultat du dé. On note J la variable aléatoire correspondant au nombre de joueurs restant sur le terrain. Quelles sont les valeurs possiblement prises par J?

 \square [9,14] \square [1,6] \square [0,14] \boxtimes [8,13] Il y a entre 1 et 6 joueurs expulsés, il en reste donc au plus 13 et au moins 8.

5. On vous propose un jeu de hasard, vous lancez un dé : vous perdez 5€ si vous obtenez, 1, 2, 3, 4 ou 5 et vous gagnez 50€ si vous obtenez 6 Combien d'euros pouvez-vous espérer gagner?

Il faut ici comprendre le mot « espérer » au sens de l'espérance qui est une moyenne pondérée (par les probabilités) d'une variable aléatoire. Quand il y a équiprobabilité, comme c'est le cas ici, l'espérance est égale à la moyenne des valeurs : $E(X) = \frac{1}{6}(-5-5-5-5-5+50) = \frac{25}{6}$