

DEVOIR DE VACANCE DE LA TOUSSAINT (FACULTATIF)

★★☆ Exercice 1: Classique suites récurrentes avec fonction (EML 1995 voie E)

On considère la fonction f définie sur $[0, +\infty[$ par $f(x) = x \ln(1+x)$. On considère également $(u_n)_{n\in\mathbb{N}}$ définie par $u_0 \ge 0$ et $u_{n+1} = f(u_n)$.

- 1. Étude de *f* .
 - (a) Justifier f est dérivable et calculer f'(x) pour tout réel x positif. Calculer également f''(x).
 - (b) Étudier les variations de f' et en déduire celle de f.
 - (c) Tracer la courbe représentative de f dans un repère orthonormé.
- 2. Résoudre l'équation f(x) = x.
- 3. On suppose dans cette question que $u_0 \in]e-1, +\infty[$.
 - (a) Montrer que pour tout entier naturel n $e-1 < u_n \le u_{n+1}$.
 - (b) En déduire que u_n tend vers $+\infty$ lorsque n tend vers $+\infty$.
- 4. Dans cette question on suppose $u_0 \in]0, e-1[$. Étudier alors la convergence de $(u_n)_{n\in\mathbb{N}}$

★★☆ Exercice 2: Classique 2 mais version EML 2011 ECE.....

On considère l'application

$$f:]0; +\infty[\rightarrow \mathbb{R}, \quad x \mapsto f(x) = (x + \ln x)e^{x-1}.$$

Partie I : Étude et représentation graphique de f

- 1. Montrer que f est dérivable sur $]0; +\infty[$. On note f' sa fonction dérivée. Pour tout $x \in]0; +\infty[$, calculer f'(x).
- 2. Établir:

$$\forall x \in]0; +\infty[, \ln x + \frac{1}{x} > 0]$$

3. En déduire :

$$\forall x \in]0; +\infty[, x + \ln x + 1 + \frac{1}{x} > 0.$$

- 4. En déduire le sens de variation de f.
- 5. Dresser le tableau de variation de f, comprenant la limite de f en 0 et la limite de f en $+\infty$. Calculer f(1) et f'(1).
- 6. Tracer l'allure de C. On précisera la tangente au point d'abscisse 1.

Il n'est demandé ni l'étude de la convexité, ni la recherche d'éventuels points d'inflexion.

Partie II : Étude d'une suite récurrente associée à f

On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=2$ et, pour tout $n\in\mathbb{N},$ $u_{n+1}=f(u_n).$

- 1. Montrer que, pour tout $n \in \mathbb{N}$, u_n existe et $u_n \ge 2$.
- 2. Établir, par récurrence :

$$\forall n \in \mathbb{N}, \quad u_n \geq e^n.$$

Quelle est la limite de u_n lorsque l'entier n tend vers l'infini?

3. Écrire un programme en Python qui calcule et affiche le plus petit entier naturel n tel que $u_n \ge 10^{20}$.

DEVOIR DE VACANCE DE LA TOUSSAINT (FACULTATIF)

★★☆ Exercice 3:EML 2017 voie E: Beaucoup d'études de fonctions (parfait pour sentraîner).....

On considère la fonction $f:]0; +\infty[\longrightarrow \mathbb{R}$ définie, pour tout $x \in]0; +\infty[$, par :

$$f(x) = e^x - e \ln(x).$$

On admet les encadrements numériques suivants :

$$2,7 < e < 2,8,$$
 $7,3 < e^2 < 7,4,$ $0,6 < \ln(2) < 0,7.$

PARTIE I : Étude de la fonction f

- 1. (a) Montrer que f est deux fois dérivable sur $]0; +\infty[$ et calculer, pour tout $x \in]0; +\infty[$, f'(x) et f''(x).
 - (b) Dresser le tableau de variations de f' avec la limite de f' en 0 et la limite de f' en $+\infty$, et préciser f'(1).
- 2. Dresser le tableau de variations de f avec la limite de f en 0 et la limite de f en $+\infty$, et préciser f(1).
- 3. Tracer l'allure de la courbe représentative de f.
- 4. (a) Étudier les variations de la fonction $u:]0; +\infty[\longrightarrow \mathbb{R}, x \longmapsto f'(x) x.$
 - (b) En déduire que l'équation f'(x) = x, dinconnue $x \in]0; +\infty[$, admet une solution et une seule, notée α , et montrer :

$$1 < \alpha < 2$$
.

PARTIE II : Étude d'une suite, étude d'une série

On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 2$$
 et, pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- 5. Montrer que, pour tout $n \in \mathbb{N}$, u_n existe et $u_n \ge 2$.
- 6. (a) Étudier les variations, puis le signe, de la fonction $g:[2;+\infty[\longrightarrow \mathbb{R},$ définie par g(x)=f(x)-x.
 - (b) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 7. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ admet $+\infty$ pour limite.
- 8. Écrire un programme en **Python** qui, étant donné un réel A, renvoie un entier naturel N tel que $u_N \ge A$.
- 9. (a) Démontrer: $\forall x \in [2; +\infty[, 2\ln(x) \le x \le \frac{e^x}{2}]$.
 - (b) En déduire : $\forall n \in \mathbb{N}, u_{n+1} \ge \frac{6-e}{2} u_n$.
 - (c) Démontrer que $\forall n \in \mathbb{N}, \quad 0 \le \frac{1}{u_n} \le \left(\frac{2}{6-e}\right)^n \frac{1}{2}$

★★☆ Exercice 4: Étude d'une suite implicite (Edhec 2008 ECE)

Pour tout entier naturel n non nul, on définit la fonction f_n , par : $\forall x \in \mathbb{R}$, $f_n(x) = \frac{1}{1 + e^x} + nx$.

On appelle (C_n) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) d'unité 5 cm.

- 1. (a) Déterminer, pour tout réel x, $f'_n(x)$ et $f''_n(x)$.
 - (b) En déduire que la fonction f_n est strictement croissante sur \mathbb{R} .
- 2. (a) Calculer $\lim_{x \to -\infty} f_n(x)$ ainsi que $\lim_{x \to +\infty} f_n(x)$.
 - (b) Montrer que les droites (D_n) et (D'_n) d'équations y = nx et y = nx + 1 sont asymptotes de (C_n) .
 - (c) Déterminer les coordonnées du seul point d'inflexion, noté A_n de (C_n) .
 - (d) Donner l'équation de la tangente (T_1) à la courbe (C_1) en A_1 , puis tracer sur un même dessin les droites (D_1) , (D'_1) et (T_1) ainsi que l'allure de la courbe (C_1) .
- 3. (a) Montrer que l'équation $f_n(x)=0$ possède une seule solution sur \mathbb{R} , notée u_n .
 - (b) Montrer que l'on a : $\forall n \in \mathbb{N}^*, \frac{-1}{n} < u_n < 0.$
 - (c) En déduire la limite de la suite (u_n) .
 - (d) En revenant à la définition de u_n , montrer que $\lim_{n\to+\infty} nu_n = -\frac{1}{2}$