DS 04 - Comparaisons de suites réelles.

⊳ Exercice 1 :

1. Énoncé les trois équivalents usuels.

2. Montrer que pour une fonction f dérivable en 0 telle que $f'(0) \neq 0$ et que pour une suite $(u_n)_{n\in\mathbb{N}}$ non nul à partir d'un certain rang et convergente de limite nulle, on a $f(u_n)-f(0) \underset{n\to +\infty}{\sim} f'(0)u_n$.

3. Démontrer les trois équivalents usuels.

1. Voir le cours!

2. Comme f est dérivable en 0, on a que la limite de $\frac{f(x)-f(0)}{x}$ existe quand x

tend vers 0 et $\lim_{x\to 0}\frac{f(x)-f(0)}{x}=f'(0)$. Comme $f'(0)\neq 0$, on a également

De plus, comme f est dérivable en 0, f est également continue en 0 et on en déduit que

 $\lim_{n \to +\infty} \frac{f(u_n) - f(0)}{f'(0)u_n} = 1$

donc par caractérisation des équivalents, on a

$$f(u_n) - f(0) \underset{n \to +\infty}{\sim} f'(0)u_n.$$

3. Soit une suite $(u_n)_{n\in\mathbb{N}}$ non nul à partir d'un certain rang et convergente de limite

— On pose $f: x \mapsto \ln(1+x)$. Il s'agit d'une fonction de classe \mathcal{C}^{∞} sur $]-1,+\infty[$ et pour tout $x\in]-1,+\infty[$, on a $f'(x)=\frac{1}{1+x}$.

On en déduit donc

$$\ln(1+u_n) \underset{n\to+\infty}{\sim} u_n.$$

— On pose $f: x \mapsto \exp(x)$. Il s'agit d'une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} et pour tout $x \in \mathbb{R}$, on a $f'(x) = e^x$.

On en déduit donc

$$\exp(u_n) - 1 \underset{n \to +\infty}{\sim} u_n.$$

— Soit $\alpha \in \mathbb{R}$. On pose $f: x \mapsto (1+x)^{\alpha}$. Il s'agit d'une fonction de classe C^{∞} sur $\mathbb{R}\setminus\{-1\}$ (sur \mathbb{R} si $\alpha\geq 0$) et pour tout $x\in\mathbb{R}\setminus\{-1\}$, on a $f'(x)=\alpha(1+x)^{\alpha-1}$.

On en déduit donc

$$(1+u_n)^{\alpha}-1 \underset{n\to+\infty}{\sim} \alpha u_n.$$

⊳ Exercice 2 :

1. Rappeler la définition et la caractérisation des relations de négligeabilité des suites.

2. Dans chaque cas dire si il existe une relation de négligeabilité entre les deux suites :

(a) Pour tout
$$n \in \mathbb{N} \backslash \{0;1\}$$
, $u_n = \frac{1}{n^2}$ et $v_n = \frac{n}{n^4-1}$

(b) Pour tout
$$n \in \mathbb{N}^*$$
, $u_n = \frac{n^2}{n+1}$ et $v_n = \frac{n^2+1}{n}$

- (c) Pour tout $n \in \mathbb{N}^*$, $u_n = e^n$ et $v_n = n^n$
- 1. Voir le cours!
- 2. On observe que pour chaque cas pour tout $n \in \mathbb{N} \setminus \{0; 1\}$, u_n et v_n sont des réels non nuls.
 - (a) On a

$$\frac{v_n}{u_n} = \frac{\frac{n}{n^4 - 1}}{\frac{1}{n^2}} = \frac{n^3}{n^4 - 1} = \frac{1}{n\left(1 - \frac{1}{n^4}\right)}$$

On a alors $\lim_{n \to +\infty} \frac{v_n}{u_n} = 0$ donc on a $v_n = \underset{n \to +\infty}{o} (u_n)$.

(b) On a

$$\frac{u_n}{v_n} = \frac{\frac{n^2}{n+1}}{\frac{n^2+1}{n}} = \frac{n^3}{(n+1)(n^2+1)} = \frac{1}{\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n^2}\right)}$$

On a alors $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$ donc on a $u_n \underset{n \to +\infty}{\sim} v_n$ donc en particulier on a aucune relation de négligeabilité entre ces deux suites.

(c) On a

$$\frac{u_n}{v_n} = \frac{e^n}{n^n} = \frac{e^n}{e^{n \ln(n)}} = e^{n(1 - \ln(n))}$$

On a alors $\lim_{n\to+\infty}\frac{u_n}{v_n}=\lim_{X\to-\infty}e^X=0$ donc on a $u_n=\mathop{o}\limits_{n\to+\infty}(v_n)$.

⊳ Exercice 3 :

- 1. Rappeler la définition et la caractérisation des relations d'équivalences des suites.
- 2. Déterminer un équivalent simple de chacune des suites suivantes :

(a)
$$(u_n)_{n\geq 2}$$
 où pour tout entier $n\geq 2,$ $u_n=\frac{1}{n-1}-\frac{1}{n+1}$

(b)
$$(v_n)_{n\in\mathbb{N}^*}$$
 où pour tout $n\in\mathbb{N}^*$, $v_n=\left(1+\frac{x}{n}\right)^n$ pour $x\in\mathbb{R}$.

(c)
$$(w_n)_{n\in\mathbb{N}^*}$$
 où pour tout $n\in\mathbb{N}^*$, $w_n=\frac{\sqrt{n+1}-\sqrt{n}}{\ln(n+1)-\ln(n)}$

- 1. Voir le cours!
- 2. (a) On observe que pour tout entier $n \ge 2$, on a $u_n = \frac{n+1-(n-1)}{(n-1)(n+1)} = \frac{2}{n-1}$

(b) On a pour tout $n \in \mathbb{N}^*$, $v_n = \exp\left(n\ln\left(1+\frac{x}{n}\right)\right)$ or comme $\lim_{n \to +\infty} \frac{x}{n} = 0$, on a

$$n \ln \left(1 + \frac{x}{n}\right) \underset{n \to +\infty}{\sim} n \frac{x}{n} = x.$$

On a donc en particulier que $\lim_{n\to+\infty}n\ln\left(1+\frac{x}{n}\right)=x$ donc $\lim_{n\to+\infty}v_n=e^x$ et comme $e^x\neq 0$, on a

$$v_n \underset{n \to +\infty}{\sim} e^x$$
.

(c) Procédons par équivalent de quotient. Soit $n \in \mathbb{N}^*$. On a

$$\sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{n+1-n}{\sqrt{n}\left(\sqrt{1+\frac{1}{n}} + 1\right)}$$

$$= \frac{1}{\sqrt{n}\left(\sqrt{1+\frac{1}{n}} + 1\right)}.$$

On en déduit donc, comme $\lim_{n\to+\infty}\left(\sqrt{1+\frac{1}{n}}+1\right)=\sqrt{1+0}+\sqrt{1}=2$

donc $\sqrt{n+1} - \sqrt{n} \underset{n \to +\infty}{\sim} \frac{1}{2\sqrt{n}}$. De plus,

$$\ln(n+1) - \ln(n) = \ln\left(\frac{n+1}{n}\right) = \ln\left(1 + \frac{1}{n}\right) \underset{n \to +\infty}{\sim} \frac{1}{n},$$

 $\operatorname{car} \lim_{n \to +\infty} \frac{1}{n} = 0.$

Par quotient, on a donc

$$w_n \underset{n \to +\infty}{\sim} \frac{\frac{1}{2\sqrt{n}}}{\frac{1}{n}} = \frac{n}{2\sqrt{n}} = \frac{\sqrt{n}}{2}.$$