ANNEE SCOLAIRE 2024/2025 Devoir surveillé sur table $n^{\circ}2$

Date: 15/11/2024 Heure 13h30 Durée: 4h00

Les documents et la calculatrice ne sont pas autorisés.

1 Quelques questions sur les séries numériques

Les deux questions sont indépendantes.

1. Déterminer la nature de chacune des séries numériques suivantes :

(a)
$$u_n = \frac{n^4 + 8n^3 + 7n - 4}{n^4 - 7n^5 + 3n + 1}$$

(b)
$$v_n = \ln\left(\frac{n^2 + n + 1}{n^2 - 1}\right)$$

(c)
$$w_n = \left(\ln\left(1 + \frac{1}{\sqrt{n}}\right)\right) e^{\frac{1}{\sqrt{n}}} \sqrt{1 + \frac{1}{\sqrt{n}}} \left(e^{\frac{1}{\sqrt{n}}} - 1\right) \left(\sqrt{1 + \frac{1}{\sqrt{n}}} - 1\right)$$

- 2. On pose pour tout $n\in\mathbb{N}$, $u_n=\frac{3n^2+2n+24}{3^n}$
 - (a) Justifier la convergence de la série $\sum_{n\geq 0}u_n$ à l'aide d'un théorème de comparaison.
 - (b) Calculer $\sum_{n=0}^{+\infty} u_n$.

2 EML 1992

On note $\begin{array}{cccc} f & : &]1,+\infty[& \to & \mathbb{R} \\ & x & \mapsto & \frac{1}{x\ln(x)} \end{array} \text{ et pour tout } n \in \mathbb{N} \text{ tel que } n \geq 2, \text{ on note } \\ S_n = \sum\limits_{k=2}^n f(k).$

- 1. Étudier les variations de f et tracer sa courbe représentative.
- 2. Montrer, pour tout entier k tel que $k \geq 3$:

$$f(k) \le \int_{k-1}^{k} f(x) dx \le f(k-1).$$

3. (a) Montrer, pour tout $n \in \mathbb{N}$ tel que $n \ge 2$:

$$S_n - \frac{1}{2\ln(2)} \le \int_2^n f(x) \, dx \le S_n - \frac{1}{n\ln(n)}.$$

(b) En déduire, pour tout $n \in \mathbb{N}$ tel que $n \ge 2$:

$$\ln(\ln(n)) - \ln(\ln(2)) \le S_n \le \ln(\ln(n)) - \ln(\ln(2)) + \frac{1}{2\ln(2)}.$$

(c) Établir $S_n \underset{n \to +\infty}{\sim} \ln(\ln(n))$.

4. Pour tout $n \in \mathbb{N}$ tel que $n \ge 2$, on note

$$u_n = S_n - \ln(\ln(n+1))$$
 et $v_n = S_n - \ln(\ln(n))$.

- (a) En utilisant le résultat de la question 2, montrer que les suites $(u_n)_{n\geq 2}$ et $(v_n)_{n\geq 2}$ sont adjacentes. On note l leur limite commune.
- (b) Montrer, pour tout $n \in \mathbb{N}$ tel que $n \ge 2$:

$$0 \le v_n - l \le \frac{1}{n \ln(n)}.$$

(c) Écrire un code python permettant de déduire une valeur approchée de l à 10^{-2} près.

3 EDHEC 2017

On note E l'espace vectoriel des fonctions polynomiales de degré inférieur ou égal à 2 et on rappelle que la famille (e_0,e_1,e_2) est une base de E, les fonctions e_0,e_1,e_2 étant définies par :

$$\forall t \in \mathbb{R}, e_0(t) = 1, e_1(t) = t \text{ et } e_2(t) = t^2.$$

On considère l'application φ qui, à toute fonction P de E, associe la fonction, notée $\varphi(P)$, définie par

$$\forall x \in \mathbb{R}, (\varphi(P))(x) = \int_0^1 P(x+t) dt.$$

- 1. (a) Montrer que φ est linéaire.
 - (b) Déterminer $(\varphi(e_0))(x), (\varphi(e_1))(x)$ et $(\varphi(e_2))(x)$ en fonction de x, puis écrire $\varphi(e_0), \varphi(e_1)$ et $\varphi(e_2)$ comme combinaisons linéaires de e_0, e_1, e_2 .
 - (c) Déduire des questions précédentes que φ est un endomorphisme de E.
- 2. (a) Écrire la matrice A de φ dans la base (e_0,e_1,e_2) . On vérifiera que la première ligne de A est

$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \end{pmatrix}$$

- (b) Justifier que φ est un automorphisme de E.
- 3. Donner les lignes de code d'une fonction python permettant de renvoyer A^n pour un entier n donné.
- 4. (a) Montrer par récurrence que, pour tout entier naturel n, il existe un réel u_n tel que l'on ait

$$A^n = \begin{pmatrix} 1 & \frac{n}{2} & u_n \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}.$$

Donner u_0 et établir que :

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + \frac{1}{6}(3n+2).$$

- (b) En déduire, par sommation, l'expression de u_n pour tout entier naturel n.
- (c) Écrire A^n sou forme de tableau matriciel.

4 Ecricome 2019

On considère dans cet exercice l'espace vectoriel $E=\mathbb{R}^3$, dont on note $\mathcal{B}=\{e_1,e_2,e_3\}$ la base canonique. Soit f l'endomorphisme de E dont la matrice représentative dans la base \mathcal{B} est la matrice :

$$A = \frac{1}{3} \begin{pmatrix} -1 & 2 & 1\\ -1 & -1 & -2\\ 1 & 1 & 2 \end{pmatrix}$$

Partie A

- 1. (a) Calculer A^2 puis vérifier que A^3 est la matrice nulle de $\mathcal{M}_3(\mathbb{R})$.
 - (b) Déterminer une base et la dimension du noyau de f.
- 2. Soient $e'_1 = (-1, -1, 1)$, $e'_2 = (2, -1, 1)$ et $e'_3 = (-1, 2, 1)$.
 - (a) Démontrer que la famille $\mathcal{B}' = \{e'_1, e'_2, e'_3\}$ est une base de E.
 - (b) Démontrer que la matrice représentative de f dans la base \mathcal{B}' est la matrice

$$T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

3. On pose:

$$M = \frac{1}{3} \begin{pmatrix} 4 & -2 & -1 \\ 1 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}$$

On note h l'endomorphisme de E dont la matrice représentative dans la base $\mathcal B$ est la matrice M.

- (a) Déterminer deux réels α et β tels que $M=\alpha A+\beta I$, où I est la matrice identité d'ordre 3.
- (b) Déterminer la matrice M' de h dans la base \mathcal{B}' .
- (c) En déduire que M est inversible.
- (d) À l'aide de la question 1.a, calculer $(M-I)^3$. En déduire l'expression de M^{-1} en fonction des matrices I, M et M^2 .
- (e) À l'aide de la formule du binôme de Newton, exprimer M^n pour tout entier naturel n, en fonction des matrices I, A et A^2 . Cette formule est-elle vérifiée pour n=-1?

Partie B

Dans cette partie, on veut montrer qu'il n'existe aucun endomorphisme g de E vérifiant $g \circ g = f$. On suppose donc par l'absurde qu'il existe une matrice V carrée d'ordre 3 telle que :

$$V^2 = T$$
.

On note g l'endomorphisme dont la matrice représentative dans la base \mathcal{B}' est V.

- 1. Montrer que VT = TV. En déduire que $g \circ f = f \circ g$.
- 2. (a) Montrer que $g(e_1')$ appartient au noyau de f. En déduire qu'il existe un réel a tel que $g(e_1')=ae_1'$.

- (b) Montrer que $g(e_2')-ae_2'$ appartient au noyau de f. En déduire qu'il existe un réel b tel que $g(e_2')=be_1'+ae_2'$.
- (c) Montrer que : $f\circ g(e_3')=g\circ f(e_3')=ae_2'+be_1'$. En déduire que $g(e_3')-ae_3'-be_2'$ appartient au noyau de f.
- (d) En déduire qu'il existe un réel c tel que : $V = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$.
- 3. Calculer V^2 en fonction de a,b et c, puis en utilisant l'hypothèse $V^2=T$, obtenir une contradiction.