TD de mathématiques n°1 : Logique et raisonnement

2024-2025 Mathématiques

Pour commencer

Propositions et quantificateurs

Exercice 1 Pour quelle valeurs de la variable $x \in \mathbb{R}_+^*$ la proposition $\mathcal{P}(x)$: " $\ln(x) > -1$ " est-elle vraie?

Exercice 2 Soyez attentif à ce résultat. On considère, pour tout $x \in \mathbb{R}$, la proposition $\mathcal{P}(x)$: " $x = \sqrt{x^2}$ ".

- (a) Donner une valeur de x pour laquelle la proposition $\mathcal{P}(x)$ est vraie.
- (b) Donner une valeur de x pour laquelle $\mathcal{P}(x)$ est fausse.
- (c) La proposition $\forall x \in \mathbb{R}^*, \mathcal{P}(x)$ est-elle vraie?
- (d) La proposition $\exists x \in \mathbb{R}^*, x = \sqrt{x^2}$ est-elle vraie?

Exercice 3 On considère, pour tout $x \in \mathbb{R}^*$, la proposition $\mathcal{P}(x)$: " $x = \frac{1}{x}$ ".

- (a) Donner une valeur de x pour laquelle la proposition $\mathcal{P}(x)$ est vraie.
- (b) Donner une valeur de x pour laquelle $\mathcal{P}(x)$ est fausse.
- (c) La proposition $\forall x \in \mathbb{R}^*, \mathcal{P}(x)$ est-elle vraie?
- (d) La proposition $\exists x \in \mathbb{R}^*, \mathcal{P}(x)$ est-elle vraie?
- (e) La proposition $\exists ! x \in \mathbb{R}^*, \mathcal{P}(x)$ est-elle vraie?

Exercice 4 Vrai ou faux? (Justifier.)

(a)
$$\forall a \in \mathbb{R}, \exists x \in \mathbb{R}, x^2 = a.$$

(c)
$$\forall a \in \mathbb{R}, \exists x \in \mathbb{R}, x^2 = a^2$$
.

(b)
$$\exists a \in \mathbb{R}, \forall x \in \mathbb{R}, x^2 = a$$
.

(d)
$$\exists a \in \mathbb{R}, \forall x \in \mathbb{R}, x^2 = a^2$$
.

Exercice 5 Pour chaque proposition, écrire sa négation puis déterminer sa valeur de vérité.

(a)
$$\mathcal{P}$$
: " $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y = 0$ "

(c)
$$\mathcal{R}$$
: " $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x \times y = 0$ "

(b)
$$Q$$
: " $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y = 0$ "

(d)
$$S: "\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x \times y = 0"$$

Exercice 6 Soit I un intervalle réel non vide, et $f: I \to \mathbb{R}$ une fonction réelle. Nier les énoncés suivants, et les interpréter le plus naturellement possible.

- (a) $\forall x \in I, f(x) \neq 0.$
- (b) $\forall y \in \mathbb{R}, \exists x \in I, f(x) = y.$
- (c) $\exists M \in \mathbb{R}, \forall x \in I, f(x) \leq M.$
- (d) $\forall x \in I, f(x) > 0 \implies x \le 0.$

Exercice 7 Soit I un intervalle réel non vide, et $f: I \to \mathbb{R}$ une fonction réelle. Écrire à l'aide de quantificateurs les propositions suivantes.

- (a) f est la fonction nulle.
- (b) La fonction f s'annule.
- (c) La fonction f ne s'annule que sur \mathbb{R}_+ .
- (d) La fonction f s'annule au moins deux fois.
- (e) La fonction f s'annule au plus une fois.
- (f) La fonction f coïncide avec l'exponentielle sur I.

Exercice 8 Soit $x \in \mathbb{R}$. Compléter les pointillés suivants en utilisant \Longrightarrow , \Longleftrightarrow ou \Longleftrightarrow (en justifiant):

(a)
$$x \ge 1 \dots x > 0$$

$$(c) x^2 = 0 \dots x = 0$$

(e)
$$x \in [-1, 1] \dots x \in [-2, 2]$$

(b)
$$0 < x < 1 \dots 0 < 1 - x < 1$$
 (d) $x^2 > 0 \dots x > 0$

(d)
$$x^2 > 0 \dots x > 0$$

$$(f) \ x \in [-1,1] \dots - x \in [-1,1]$$

Exercice 9 Soient $a \in \mathbb{R}$, $b \in \mathbb{R}$, $c \in \mathbb{R}_+$ et $d \in \mathbb{R}_+$. Compléter, si possible, les pointillés suivants en utilisant \Rightarrow , \iff ou \iff (en justifiant):

(a)
$$a = b \dots a^2 = b^2$$

(c)
$$c = d \dots c^2 = d^2$$

(b)
$$a < b \dots a^2 < b^2$$

(d)
$$c < d \dots c^2 < d^2$$

Exercice 10 Soit $x \in \mathbb{R}$. On considère les propositions $\mathcal{P}(x)$: " $\forall y > 0, x \leq y$ " et $\mathcal{Q}(x)$: " $x \leq 0$ ".

Montrer que $\mathcal{P}(x) \Longrightarrow \mathcal{Q}(x)$ (on pourra raisonner aussi bien par contraposée que par l'absurde). Les propositions $\mathcal{P}(x)$ et $\mathcal{Q}(x)$ sont-elles équivalentes?

$M\'ethodes\ de\ raisonnement$

Exercice 11 Démontrer l'égalité ensembliste :

$$\{(t+1,t-1)|t\in\mathbb{R}\} = \{(u,v)\in\mathbb{R}^2|u-v-2=0\}.$$

Exercice 12 On pose $A = \{(x,y) \in (\mathbb{R}_+)^2 | x^2 + y^2 = 1\}$ et $B = \{(t,\sqrt{1-t^2}) | t \in [0,1]\}$.

- (a) Justifier que B est correctement défini.
- (b) Démontrer que A = B.

Exercice 13 Étant donnée une suite réelle $u=(u_n)_{n\in\mathbb{N}}$, on considère les propositions suivantes :

$$P: "\forall n \in \mathbb{N}, u_{n+3} = 0"$$

et

$$Q: \forall n \in \mathbb{N}_{>3}, u_n = 0$$
".

- (a) Donner un exemple de suite u pour laquelle P est vraie, puis un exemple de suite pour laquelle P est fausse. Même question pour Q.
- (b) Montrer que, pour toute suite réelle $u = (u_n)_{n \in \mathbb{N}}$, P et Q sont équivalentes.

Exercice 14 À l'aide d'une disjonction des cas, démontrer : $\forall n \in \mathbb{N}, \frac{n(n^2+1)}{2} \in \mathbb{N}$.

Exercice 15 Montrer que pour tout entier naturel $n, n^2 - n$ est pair.

Exercice 16 Soit $n \in \mathbb{N}$. Montrer que si n^2 est un multiple de 3, alors n est un multiple de 3.

Exercice 17 Soit $n \in \mathbb{N}$ et $m \in \mathbb{N}$. On dit que n et m sont de même parité si : n et m sont pairs, ou bien n et m sont impairs. Montrer que si $n^2 + m^2$ est impair, alors n et m ne sont pas de même parité. Y a-t-il équivalence?

Exercice 18 Soit $n \in \mathbb{N}^*$. On suppose que la proposition \mathcal{P} : " $\exists p \in \mathbb{N}, n = p^2$ " est vraie. Montrer que la proposition Q: " $\exists q \in \mathbb{N}, 2n = q^2$ " est fausse, à l'aide d'un raisonnement par l'absurde.

Exercice 19 Montrer que $\frac{\ln(3)}{\ln(2)} \notin \mathbb{Q}$.

Exercice 20 La quantité conjuguée. Démontrer par une chaine d'équivalence correctement justifiée que :

$$\forall n \in \mathbb{N}^*, \frac{1}{\sqrt{2n+1}} \le \sqrt{2n+1} - \sqrt{2n-1}.$$

Exercice 21 Thème très classique : inégalités entre les moyennes harmoniques, géométriques et arithmétiques. Soient $a \in \mathbb{R}_+^*$ et $b \in \mathbb{R}_+^*$. Montrer que $\frac{2}{\frac{1}{a} + \frac{1}{b}} \le \sqrt{ab} \le \frac{a+b}{2}$.

Exercice 22 Montrer en raisonnant par équivalence que :

$$\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall c \in \mathbb{R}, \forall d \in \mathbb{R}, (a^2 + b^2) (c^2 + d^2) = (ac + bd)^2 \iff ad = bc$$

Exercice 23

- (a) Montrer que pour tout $x \in \mathbb{R}_+^*, x + \frac{1}{x} \ge 2$.
- (b) En déduire que pour tout $a \in \mathbb{R}_+^*$, pour tout $b \in \mathbb{R}_+^*$, pour tout $c \in \mathbb{R}_+^*$, $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 9$.

Exercice 24 Résoudre l'équation $\sqrt{2-x}=x$ à l'aide d'un raisonnement par analyse-synthèse.

Exercice 25 Résoudre les équations et inéquations suivantes en raisonnant si besoin par disjonction de cas.

$$(a) \ \sqrt{x+5} = x+3$$

(c)
$$\sqrt{x^2 - x - 2} = -x$$

(b)
$$\sqrt{x^2 - 1} \le x - 1$$

(d)
$$\sqrt{x+1} - \sqrt{x-1} > 1$$

Pour continuer

Propositions et quantificateurs

Exercice 26 Pour quelle valeurs de la variable $x \in \mathbb{R}$ la proposition $\mathcal{P}(x)$: " $x^2 = x$ " est-elle vraie?

Exercice 27 Pour chaque proposition ci-dessous, écrire sa négation puis déterminer si elle est vraie ou fausse.

(a)
$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0.$$

(e)
$$\exists y \in \mathbb{R}, \forall x \in \mathbb{R}_+, x = y^2$$
.

(b)
$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y > 0.$$

$$(f) \ \forall x \in \mathbb{R}, \forall y > x, \exists z \in \mathbb{R}, x < z < y.$$

(c)
$$\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y \le 0.$$

$$(g) \ \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^2 > x.$$

(d)
$$\forall x \in \mathbb{R}_+, \exists y \in \mathbb{R}, x = y^2$$
.

(h)
$$\forall n \in \mathbb{N}, \exists x \in \mathbb{R}, n < x < n + 1.$$

Exercice 28 (+) Soit $x \in \mathbb{R}$. On considère les propositions $\mathcal{P}(x)$: " $\forall y > 0, -y \le x \le y$ " et $\mathcal{Q}(x)$: "x = 0". Montrer que $\mathcal{P}(x) \Longrightarrow \mathcal{Q}(x)$ (on pourra raisonner aussi bien par contraposée que par l'absurde). Les propositions $\mathcal{P}(x)$ et $\mathcal{Q}(x)$ sont-elles équivalentes?

Exercice 29 (+) Soit $x \in \mathbb{R}$. Montrer que : $(\forall \varepsilon \in \mathbb{R}_+^*, x^2 \leq \varepsilon) \Longrightarrow x = 0$.

Méthodes de raisonnement

Exercice 30 Montrer que pour tout entier naturel $n, n^3 - n$ est multiple de 3.

Exercice 31 Montrer que $\sqrt{3} \notin \mathbb{Q}$.

Exercice 32 Montrer que $\frac{\ln(2)}{\ln(10)} \notin \mathbb{Q}$.

Exercice 33 Soit $n \in \mathbb{N}$ tel que $n \ge 2$. Montrer en raisonnant par équivalence que : $\frac{1}{n^2} \le \frac{1}{n-1} - \frac{1}{n}$.

Exercice 34 Soit $n \in \mathbb{N}^*$. Montrer en raisonnant par équivalence que : $\sqrt{n-1} + \sqrt{n+1} \le 2\sqrt{n}$.

Exercice 35 (+) Soit $x \in \mathbb{R}$ tel que $x \notin \mathbb{Q}$. Soient $a, b, c, d \in \mathbb{Z}$ tels que $ad \neq bc$. Montrer que $\frac{ax + b}{cx + d} \notin \mathbb{Q}$.

Exercice 36 (+) Montrer que: $\forall x \in]0,1$ [, $\exists \alpha \in \mathbb{R}_{+}^{*}$,] $x-\alpha, x+\alpha[\subset]0,1$ [(on pourra distinguer des cas).

Exercice 37 Résoudre les inéquations suivantes en raisonnant par disjonction de cas.

(a)
$$\frac{2x+1}{x-1} > 2$$

$$(b) \ \frac{x-3}{3x+1} \le \frac{x}{x-1}$$

(c)
$$\frac{x^2 - x - 2}{x^2 - 1} > 1$$

Exercice 38 Résoudre les équations et inéquations suivantes en raisonnant si besoin par disjonction de cas.

(a)
$$\sqrt{x+2} \ge x$$

(d)
$$\sqrt{2-x} < x$$

(b)
$$\sqrt{x+6} = x$$

(e)
$$\sqrt{x^2 - x - 2} < -x$$

(c)
$$\sqrt{x^2+1} = 2x+1$$

$$(f) \ \sqrt{x} + \sqrt{x+2} = 2$$