TD de mathématiques n°2 : Généralités sur les fonctions réelles

2024-2025 Mathématiques

Pour commencer

Propriétés des fonctions réelles

Exercice 1 Déterminer les domaines de définition des fonctions suivantes.

(a)
$$x \longmapsto \frac{x+1}{(x-1)(x-2)}$$

$$(c) \ x \longmapsto \frac{\sqrt{x^2 - 1}}{x^2 + 1}$$

(e)
$$x \longmapsto \sqrt{x + \frac{1}{x}}$$

$$(b) \ x \longmapsto \frac{x-1}{x-1 - \frac{1}{x-1}}$$

$$(d) \ x \longmapsto \sqrt{x^2 - x - 2}$$

$$(f) \ x \longmapsto \ln\left(x + \sqrt{x^2 + 1}\right)$$

Exercice 2 Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R} \longrightarrow \mathbb{R}$ deux fonctions réelles.

- (a) Montrer que si f et g sont croissantes sur \mathbb{R} , alors f+g est croissante sur \mathbb{R} .
- (b) Montrer que si f et g sont croissantes et positives sur \mathbb{R} , alors $f \times g$ est croissante sur \mathbb{R} .
- (c) Montrer que si f et g sont décroissantes sur \mathbb{R} , alors f+g est décroissante sur \mathbb{R} .
- (d) Montrer que si f et g sont décroissantes et positives sur \mathbb{R} , alors $f \times g$ est décroissante sur \mathbb{R} .

Exercice 3 Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R} \longrightarrow \mathbb{R}$ deux fonctions bornées. Montrer que f+g et $f \times g$ sont bornées.

Exercice 4 On considère la fonction $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ définie pour tout $x \in \mathbb{R}_+^*$ par $f(x) = x + \frac{1}{x}$.

- (a) Montrer que f admet un minimum sur \mathbb{R}_+^* et déterminer la valeur de ce minimum.
- (b) La fonction f est-elle bornée sur \mathbb{R}_+^* ?

Exercice 5 Pour tout $x \in \mathbb{R}$, on pose $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$. Calculer f(x) + 1 et f(x) - 1 pour tout réel x, puis en déduire que f est bornée sur \mathbb{R} .

Exercice 6 Pour tout $x \in \mathbb{R}$, on pose $f(x) = e^{-x} \ln(1 + e^x)$. Montrer que pour tout $t \in \mathbb{R}_+$, $\ln(1 + t) \le t$. En déduire que f est bornée sur \mathbb{R} .

Exercice 7 Soient $a, b \in \mathbb{R}_+^*$. On considère la fonction $f : \mathbb{R}_+^* \longrightarrow \mathbb{R}$ définie pour tout x > 0 par $f(x) = \frac{a}{x} + \frac{x}{b}$. Montrer que f est admet un minimum sur \mathbb{R}_+^* , et déterminer la valeur de ce minimum. On pourra utiliser un tableau de variation.

Exercice 8 Montrer que la fonction définie sur \mathbb{R} par $x \mapsto \frac{1+e^{-x}}{1+e^x}$ n'est ni paire ni impaire.

Exercice 9 Parité, imparité : on parle des "propriétés de symétrie". Étudier les propriétés de symétrie de la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

Exercice 10 On considère la fonction f définie par la formule $f(x) = \ln\left(\frac{1-x}{1+x}\right)$. Étudier les éventuelles propriétés de symétrie de f.

Exercice 11 Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction paire. Étudier les propriétés de symétrie des fonctions $x \longmapsto x f(x)$ et $x \longmapsto x^2 f(x)$.

Exercice 12 Déterminer les fonctions dérivées des fonctions ci-dessous (on précisera les domaines de définition et de dérivabilité).

(a)
$$x \longmapsto e^{x \ln x}$$

$$(c) \ x \longmapsto e^{\sqrt{x}}$$

$$(e) \ x \mapsto \frac{1}{\sqrt{1+x}}$$

$$(b) \ x \longmapsto e^{-\frac{x^2}{2}}$$

$$(d) \ x \longmapsto \ln\left(\frac{e^x - 1}{x}\right)$$

$$(f) \ x \mapsto \frac{\sqrt{x+1} - \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}$$

Exercice 13

(a) Montrer que pour tout x > -1, $\ln(1+x) \le x$ à l'aide d'une étude de variations.

(b) En déduire que pour tout x > -1, $\ln(1+x) \ge \frac{x}{1+x}$. Indication : on pourra appliquer le résultat précédent $\hat{a} - \frac{x}{1+x}$.

Exercice 14 Montrer que pour tout $x \in \mathbb{R}_+, 1+x+\frac{x^2}{2} \le e^x$ à l'aide d'une étude de variations.

Exercice 15 On considère les fonctions f et g définies par les formules $f(x) = \sqrt{x^2 - 1}$ et $g(x) = \sqrt{1 - x^2}$.

Déterminer les domaines de définition $\mathcal{D}_f, \mathcal{D}_g, \mathcal{D}_{g \circ f}$ de f, g et $g \circ f$ et calculer $g \circ f$. Que peut-on dire de $f \circ g$?

Exercice 16 Dans chacun des cas suivants, déterminer le domaine de définition de la fonction composée $g \circ f$ et écrire la formule donnant cette fonction. Même consigne pour la fonction composée $f \circ g$.

(a)
$$f(x) = x + \frac{1}{x}$$
 et $g(x) = x^2$

(c)
$$f(x) = 8x^2 - 6x + 1$$
 et $g(x) = \sqrt{x}$

(b)
$$f(x) = \ln(1+x)$$
 et $g(x) = x - 1$

(d)
$$f(x) = \ln(e^x + 1)$$
 et $g(x) = \ln(e^x - 1)$

Exercice 17 Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R} \longrightarrow \mathbb{R}$ deux fonctions.

(a) Montrer que si f est paire, alors $g \circ f$ est paire.

(b) Montrer que si f est impaire et g est paire, alors $g \circ f$ est paire.

(c) Montrer que si f est impaire et g est impaire, alors $g \circ f$ est impaire.

Exercice 18 On considère la fonction f définie par la formule $f(x) = (x^2 - 1)\sqrt{4 - x^2}$

(a) Déterminer le domaine de définition \mathcal{D} de f.

(b) Étudier les éventuelles propriétés de symétrie de f.

(c) Déterminer le domaine de dérivabilité \mathcal{D}' de f et calculer f'(x) pour tout $x \in \mathcal{D}'$.

(d) En déduire les variations de f sur \mathcal{D} et montrer que f est bornée sur \mathcal{D} .

$Valeur\ absolue$

Exercice 19 Résoudre les équations et inéquations suivantes.

(a)
$$|x-2|=1$$

(c)
$$|2x^2 + x - 1| = 3 - x$$

(e)
$$|x^2 + x - 2| \ge x$$

(b)
$$|x^2 - 1| = x + 5$$

$$(d) |x-2| \le x$$

$$(f) |x^2 - 3x + 2| \le |x - 2|$$

Exercice 20 Tracer les représentations graphiques des fonctions suivantes :

$$(a) \ x \longmapsto |x+2|$$

$$(b) \ x \longmapsto |x^2 - x - 2|$$

$$(c) \ x \longmapsto |\ln x|$$

Exercice 21 On considère la fonction f définie par la formule $f(x) = |x - \frac{1}{x}|$.

(a) Déterminer le domaine de définition \mathcal{D}_f de f et étudier ses propriétés de symétrie.

(b) Pour tout $x \in \mathcal{D}_f$, exprimer f(x) sans utiliser de valeur absolue.

(c) Étudier les variations de f sur son domaine.

(d) Résoudre les équations f(x) = 0 et f(x) = 2, d'inconnue $x \in \mathcal{D}_f$.

Exercice 22 Soit $x \in [-1,1]$ et $\alpha \in \mathbb{R}_+^*$. Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \frac{x^n}{n^{\alpha}}$

Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est bornée en montrant :

$$\exists M \in \mathbb{R}, \forall n \in \mathbb{N}^*, |u_n| \leq M.$$

2

Partie entière

Exercice 23 Montrer que : $\forall x \in \mathbb{R}, \forall p \in \mathbb{Z}, \lfloor x+p \rfloor = \lfloor x \rfloor + p$.

Exercice 24 Déterminer l'ensemble des entiers naturels n tels que $n=2 \left\lfloor \frac{n}{2} \right\rfloor$.

Exercice 25 Résoudre les équations et inéquations suivantes.

$$(a) \lfloor 2x \rfloor = 1$$

(c)
$$|x^2 + 1| = 2$$

(e)
$$[x^2 - 4] < 5$$

(b)
$$|3x+1|=2$$

$$(d) |2x-1| \ge 2$$

$$(f) |4x(1-x)| > 0$$

Exercice 26 Pour tout $x \in \mathbb{R}$, on pose $F(x) = x - \lfloor x \rfloor$ (on dit que F est la fonction partie fractionnaire).

- (a) Montrer que la fonction F est bornée sur \mathbb{R} .
- (b) Démontrer que pour tout $x \in \mathbb{R}, F(x+1) = F(x)$.
- (c) Tracer la représentation graphique de la fonction F sur l'intervalle [0,1[.
- (d) En déduire la représentation graphique de la fonction F sur l'intervalle [-5, 5].

Puissances généralisées

Exercice 27 Résoudre l'équation $x^{\sqrt{x}} = (\sqrt{x})^x$.

Exercice 28 On considère la fonction f définie par $f(x) = (1+x)^x$.

- (a) Rappeler la définition de la quantité $(1+x)^x$ et en déduire le domaine de définition \mathcal{D}_f de f.
- (b) Étudier les variations de f sur \mathcal{D}_f . En déduire le meilleur minorant possible de f sur \mathcal{D}_f .

Exercice 29 Étudier les variations de la fonction $f(x) = x^{\ln x}$ sur son ensemble de définition.

Exercice 30 Étudier les variations de la fonction définie par la formule $f(x) = x^{\frac{1}{x}}$ sur son domaine de définition et en déduire qu'il s'agit d'une fonction bornée. En déduire la plus grande valeur de $\sqrt[n]{n}$ pour $n \in \mathbb{N}^*$.

Exercice 31 Soit $\alpha \in \mathbb{R} \setminus \{0,1\}$. Pour tout $x \in \mathbb{R}_+^*$, on pose $f(x) = (x+1)^{\alpha} - x^{\alpha}$.

Étudier le signe et les variations de f sur \mathbb{R}_{+}^{*} .

Pour continuer

Propriétés des fonctions réelles

Exercice 32 Déterminer les domaines de définition des fonctions suivantes.

(a)
$$x \longmapsto \sqrt{x} + \sqrt{\frac{1}{x}}$$

(c)
$$x \longmapsto \ln(1-x) + \ln(1+x)$$

(b)
$$x \longmapsto \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

(d)
$$x \longmapsto \ln(x^2 + x - 12)$$

Exercice 33 Montrer que la fonction définie par la formule $f(x) = e^{-x \ln x}$ est bornée sur son domaine. On pourra utiliser un tableau de variation.

$$\ln x$$

Exercice 34 Montrer que la fonction définie par la formule $f(x) = e^{-x}$ est bornée sur son domaine.

Exercice 35 Démontrer que pour tout $x \in \mathbb{R}$, $\left(-x + \sqrt{x^2 + 1}\right)\left(x + \sqrt{x^2 + 1}\right) = 1$.

Étudier les propriétés de symétrie de la fonction g définie par la formule $g(x) = \ln (x + \sqrt{x^2 + 1})$.

Exercice 36 Soit $\mathcal{D} \subset \mathbb{R}$ un ensemble symétrique par rapport à l'origine et $f: \mathcal{D} \longrightarrow \mathbb{R}$ une fonction.

- (a) Montrer qu'il existe une unique fonction $p: \mathcal{D} \longrightarrow \mathbb{R}$ et une unique fonction $i: \mathcal{D} \longrightarrow \mathbb{R}$ telles que p est paire, i est impaire et f = p + i.
- (b) Déterminer explicitement p et i dans le cas où f est définie sur]-1,1[par la formule $f(x)=\sqrt{\frac{1+x}{1-x}}$.

Exercice 37 Soit $n \in \mathbb{N}^*$. Pour tout $x \in \mathbb{R}$, on pose $f(x) = (x+1)^n + (x-1)^n$ et $g(x) = (x+1)^n - (x-1)^n$. Étudier les propriétés de symétrie de f et g.

Exercice 38 Déterminer les fonctions dérivées des fonctions ci-dessous (on précisera les domaines de définition et de dérivabilité).

3

(a)
$$x \longmapsto e^{-\frac{1}{x^2}}$$

(c)
$$x \longmapsto \ln\left(x + \sqrt{x^2 + 1}\right)$$

(e)
$$x \mapsto \sqrt{\frac{1-x}{1+x}}$$

(b)
$$x \longmapsto \ln (1 + e^{-x})$$

$$(d) \ x \longmapsto \ln\left(x + \sqrt{x^2 - 1}\right)$$

$$(f) \ x \mapsto \sqrt{x^2 - 2x - 1}$$

Exercice 39

- (a) Montrer que pour tout $x \in \mathbb{R}, e^x \ge 1 + x$ à l'aide d'une étude de variations.
- (b) En déduire que pour tout $x \in \mathbb{R}, e^x \leq 1 + xe^x$. Indication : on pourra appliquer le résultat précédent.

Exercice 40 Montrer que pour tout $x \in \mathbb{R}_+$, $\ln(1+x) \ge x - \frac{x^2}{2}$ à l'aide d'une étude de variations.

Exercice 41 Dans chacun des cas suivants, déterminer le domaine de définition de la fonction composée $q \circ f$ et écrire la formule donnant cette fonction. Même consigne pour la fonction composée $f\circ g$.

(a)
$$f(x) = \frac{x+2}{1+2x}$$
 et $g(x) = \frac{x-2}{1-2x}$

(c)
$$f(x) = \frac{2x-5}{x+3}$$
 et $g(x) = \frac{3x+5}{2-x}$

(b)
$$f(x) = x^2$$
 et $g(x) = e^{-x}$

(d)
$$f(x) = x^2 - 2x - 3$$
 et $g(x) = \ln(x)$

Valeur absolue

Exercice 42 Résoudre les équations et inéquations suivantes.

(a)
$$|3-x| = x-1$$

(e)
$$|1 - x^2| = |x + 1|$$

(i)
$$|x-1| > |x+1|$$

(b)
$$|x+1| = |2x-1|$$
 (f) $|2x-3| \ge 1$

$$(f) |2x - 3| \ge 1$$

$$(j) \left| 1 - x^2 \right| \le 2x$$

(c)
$$|2x+1|=1-x$$

$$(g) |x+3| > |3x+1|$$

(d)
$$|3 - x^2| = 1$$

(h)
$$|3x+1| \le 4$$

Exercice 43 Soient $x \in \mathbb{R}$ et $y \in \mathbb{R}$.

- (a) Montrer que $|x| \le |x y| + |y|$ et $|y| \le |x y| + |x|$.
- (b) En déduire que $|x-y| \ge ||x|-|y||$ (seconde inégalité triangulaire).

Exercice 44 Pour tout $x \in \mathbb{R}$, on pose $f(x) = e^{-|x|}$.

- (a) Étudier les propriétés de symétrie de f.
- (b) Pour tout $x \in \mathbb{R}$, exprimer f(x) sans utiliser de valeur absolue.
- (c) En déduire le signe et les variations de f sur \mathbb{R} , puis tracer sa courbe représentative.

Exercice 45 Pour tout $x \in \mathbb{R}$, on pose f(x) = |x-2| + |x| + |x+2|.

En distinguant des cas de manière appropriée, exprimer la fonction f sans utiliser de valeur absolue.

Tracer ensuite soigneusement la représentation graphique de la fonction f.

Résoudre enfin les équations f(x) = -2 et f(x) = 6 ainsi que les inéquations f(x) < 5 et $6 \le f(x) < 8$.

Exercice 46 Soient $a, b \in \mathbb{R}$ tels que a < b. On considère la fonction f définie pour tout $x \in \mathbb{R}$ par

$$f(x) = |x - a| - |x - b|.$$

Montrer que la fonction f est bornée sur \mathbb{R} (déterminer le meilleur minorant et le meilleur majorant).

Exercice 47 Soient $a, b \in \mathbb{R}$ tels que a < b. On considère la fonction f définie pour tout $x \in \mathbb{R}$ par :

$$f(x) = |x - a| + |x - b|.$$

- (a) En distinguant trois cas appropriés, donner une expression de f(x) sans utiliser de valeur absolue.
- (b) Déterminer le tableau de variations de la fonction f sur \mathbb{R} et tracer la courbe représentative de f.
- (c) Montrer que pour tout $x \in \mathbb{R}, |x-a|+|x-b| \ge b-a$.

Partie entière

Exercice 48 Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Montrer que $\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor$.

Exercice 49 Résoudre les équations et inéquations suivantes.

$$(a) \left[1 - x^2 \right] = 0$$

$$(e) \lfloor x \rfloor = x$$

(i)
$$2|x+1| \le 3$$

(b)
$$|\sqrt{x}| = 2$$

$$(f) |-x| < 1$$

$$(j) \ 4 \left\lfloor x^2 + x \right\rfloor \le 5$$

(c)
$$|1 - 2x| = -3$$

$$(g) \lfloor 2 - x \rfloor \leq 1$$

(d)
$$|x^2 + 2x - 3| = 0$$

(h)
$$|x^2 + x - 1| > 0$$

Exercice 50 Pour tout $x \in \mathbb{R}$, on pose $f(x) = (x - \lfloor x \rfloor)(1 - x + \lfloor x \rfloor)$.

- (a) Tracer la courbe représentative de f sur l'intervalle [0,1].
- (b) Étudier les éventuelles propriétés de symétrie de f. Tracer la courbe représentative de f sur l'intervalle [-1,1].
- (c) Montrer que pour tout $x \in \mathbb{R}$, f(x+1) = f(x). En déduire le tracé complet de la courbe représentative de f sur l'intervalle [-5,5].

Puissances généralisées

Exercice 51 Étudier les variations de la fonction $f(x) = x^{x^2}$ sur son ensemble de définition.

Exercice 52 Étudier les variations de la fonction $f(x) = (x^x)^2$ sur son ensemble de définition.

Exercice 53 On souhaite déterminer, s'il en existe, les valeurs $a \in \mathbb{N}^*$ et $b \in \mathbb{N}^*$ avec a < b telles que $a^b = b^a$. On considère la fonction $f : \mathbb{R}_+^* \longrightarrow \mathbb{R}$ définie pour tout x > 0 par $f(x) = \frac{\ln x}{x}$.

- (a) Soient $a, b \in \mathbb{N}^*$. Montrer que $a^b = b^a \iff f(a) = f(b)$.
- (b) (i) Calculer f'(x) pour tout x > 0 et dresser le tableau de variations de f sur \mathbb{R}_+^* .
 - (ii) Dresser également le tableau de signe de f sur \mathbb{R}_{+}^{*} .
- (c) Soient $a, b \in \mathbb{N}^*$ tels que a < b. À l'aide de la question (b), montrer que $f(a) = f(b) \Longrightarrow a = 2$.
- (d) Montrer par récurrence que : $\forall n \in \mathbb{N}_{\geq 5}, 2^n > n^2.$
- (e) Conclure en donnant toutes les solutions du problème posé.