Pour commencer

Généralités sur les suites

Exercice 1 Vrai ou faux?

- (a) La suite (u_n) définie sur \mathbb{N} par $u_n = \frac{2n-3}{n+1}$ est majoré par 2.
- (b) La suite (u_n) définie sur \mathbb{N} par $u_n = 2^n + n + 1$ est minorée.
- (c) La suite (u_n) définie sur \mathbb{N} par $u_n = 2^n + 1$ est majoré.
- (d) La suite (u_n) définie sur $\mathbb N$ par $u_n=\frac{1}{4^n}$ est bornée.
- (e) Toute suite est nécessairement soit minorée, soit majorée.

Exercice 2 Pour tout $n \in \mathbb{N}$, on pose $u_n = \frac{2n}{n+1}$ et $v_n = \frac{2n+1}{n+2}$.

Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont bornées.

Exercice 3 Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \frac{n}{n+1} + \ln\left(\frac{n+1}{n}\right)$.

Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est bornée.

Exercice 4 Pour tout $n \in \mathbb{N}^*$, on pose $u_n = n - \frac{1}{n}$ et $v_n = n + \frac{1}{n}$.

Étudier les sens de variations des suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$.

Exercice 5 Dans chacun des cas suivants, étudier les variations de la suite $(u_n)_{n\in\mathbb{N}}$.

$$(a) u_n = \frac{2n}{n+1}$$

(c)
$$u_n = \frac{2^n}{n+1}$$

(e)
$$u_n = 2n + (-1)^n$$

$$(b) u_n = \ln(n+1) - \ln(n)$$

$$(d) \ u_n = \sqrt{n+1} - \sqrt{n}$$

$$(f) u_n = e^{n+1} - e^n$$

Exercice 6 Pour tout $n \in \mathbb{N}$ tel que $n \geq 4$, on pose $u_n = \frac{n^2}{2^n}$.

- (a) Montrer que la suite $(u_n)_{n>4}$ est décroissante.
- (b) En déduire que pour tout $n \in \mathbb{N}$ tel que $n \ge 4, n^2 \le 2^n$.

Exercice 7 On considère une suite $(u_n)_{n\in\mathbb{N}}$ définie par un terme initial $u_0 \geq 1$ et vérifiant pour tout $n\in\mathbb{N}$ la relation de récurrence $u_{n+1} = 3u_n - 2$.

- (a) Montrer que pour tout $n \in \mathbb{N}, u_n \geq 1$.
- (b) Déterminer le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 8 On considère la suite réelle $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_1=1$ et pour tout $n\in\mathbb{N}^*, u_{n+1}=1+\frac{u_n}{n+1}$.

- (a) Montrer que pour tout $n \in \mathbb{N}^*, 1 \leq u_n \leq 2$.
- (b) En déduire le sens de variations de $(u_n)_{n\in\mathbb{N}^*}$.

Exercice 9 On considère une suite $(u_n)_{n\in\mathbb{N}}$ telle que pour tout $n\in\mathbb{N}, u_{n+1}=\frac{1+(u_n)^2}{2}$. Déterminer le sens de variations de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 10 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=-1$ et pour tout $n\in\mathbb{N}, u_{n+1}=\frac{2}{3}u_n+\frac{1}{3}n+1$.

Montrer que pour tout $n \in \mathbb{N}$, $u_n \leq n$ et en déduire le sens de variations de la suite $(u_n)_{n \in \mathbb{N}}$.

Exercice 11 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=2$ et pour tout $n\in\mathbb{N}, u_{n+1}=\frac{1}{2}\left(u_n+\frac{2}{u_n}\right)$.

- (a) Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $u_n > 0$.
- (b) Montrer que pour tout $n \in \mathbb{N}$, $u_{n+1} \sqrt{2} = \frac{\left(u_n \sqrt{2}\right)^2}{2u_m}$.
- (c) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est minorée par $\sqrt{2}$.

(d) En déduire le sens de variations de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 12 Soit $f: \mathcal{D}_f \longrightarrow \mathbb{R}$ une fonction telle que pour tout $x \in \mathcal{D}_f$, $f(x) \in \mathcal{D}_f$. On considère une suite réelle $(u_n)_{n\in\mathbb{N}}$ telle que $u_0\in\mathcal{D}_f$ et pour tout $n\in\mathbb{N}, u_{n+1}=f(u_n)$.

Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $u_n \in \mathcal{D}_f$.

$Suites\ remarquables$

Exercice 13 Vrai ou faux?

- (a) La somme de deux suites arithmétiques est arithmétique.
- (b) Le produit de deux suites arithmétiques est arithmétique.
- (c) La somme de deux suites géométriques est géométrique.
- (d) Le produit de deux suites géométriques est géométrique.

Exercice 14 Dans chacun des cas suivants, déterminer explicitement u_n en fonction de n, pour tout $n \in$ \mathbb{N} .

(a)
$$u_0 = 2$$
 et $u_{n+1} = u_n + 3$

(c)
$$u_2 = \frac{7}{4}$$
 et $u_{n+1} = u_n + \frac{3}{4}$

(b)
$$u_0 = 2$$
 et $u_{n+1} = 3u_n$

(d)
$$u_5 = 2$$
 et $u_{n+1} = \frac{1}{2}u_n$

Exercice 15

- (a) On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et pour tout $n\in\mathbb{N}, u_{n+1}=u_n+n$. La suite $(u_n)_{n\in\mathbb{N}}$ est-elle arithmétique, géométrique, ou bien ni l'un ni l'autre?
- (b) On considère la suite réelle $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout $n\in\mathbb{N}^*$ par $u_n=\left(1+\frac{1}{n}\right)^n$. La suite $(u_n)_{n\in\mathbb{N}^*}$ est-elle arithmétique, géométrique, ou bien ni l'un ni l'autre?

Exercice 16 Déterminer, en fonction de $n \in \mathbb{N}$, la valeur de $\sum_{k=1}^{n} u_k$ lorsque :

(a)
$$u_0 = 2$$
 et $u_{n+1} = u_n + 3$ (c) $u_0 = 7$ et $u_{n+1} = u_n - 5$

(c)
$$u_0 = 7$$
 et $u_{n+1} = u_n - 5$

(b)
$$u_0 = 2$$
 et $u_{n+1} = 3u_n$

(d)
$$u_0 = 4$$
 et $u_{n+1} = -2u_n$

Exercice 17 On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et pour tout $n\in\mathbb{N}, u_{n+1}=3u_n+3^n$

- (a) Pour tout $n \in \mathbb{N}$, on pose $v_n = \frac{u_n}{3^n}$. Que peut-on dire de la suite $(v_n)_{n \in \mathbb{N}}$?
- (b) Déterminer explicitement u_n en fonction de n, pour tout $n \in \mathbb{N}$.

Exercice 18 Considérons les suites u et v définies sur \mathbb{N}^* par :

$$\begin{cases} u_1 = 4 \\ \forall n \in \mathbb{N}^*, u_{n+1} = u_n \sqrt{u_n} \end{cases} \text{ et } \forall n \in \mathbb{N}^*, v_n = \ln(u_n).$$

- (a) Montrer que $(u_n)_{n\in\mathbb{N}^*}$ est bien définie et que : $\forall n\in\mathbb{N}^*, u_n\geq 4$.
- (b) Étudier les variations de $(u_n)_n$.
- (c) Justifier que $(v_n)_{n\in\mathbb{N}^*}$ est bien définie.
- (d) Déterminer le terme général de $(v_n)_n$ puis celui de $(u_n)_n$.

Exercice 19 On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et pour tout $n\in\mathbb{N}, u_{n+1}=\frac{1}{2}u_n+n+\frac{1}{2}u_n+$ 1.

- (a) Montrer qu'il existe une unique suite arithmétique $(v_n)_{n\in\mathbb{N}}$ telle que pour tout $n\in\mathbb{N}, v_{n+1}=\frac{1}{2}v_n+n+1$.
- (b) En déduire explicitement u_n en fonction de n, pour tout $n \in \mathbb{N}$.

Exercice 20 Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles définies par $u_0=1$ et $v_0=-1$ et pour tout $n \in \mathbb{N}$:

$$\begin{cases} u_{n+1} = u_n + 2v_n \\ v_{n+1} = 2u_n - 2v_n \end{cases}$$

Pour tout $n \in \mathbb{N}$, on pose $\alpha_n = -u_n + 2v_n$ et $\beta_n = 2u_n + v_n$.

- (a) Déterminer une relation de récurrence vérifiée par la suite $(\alpha_n)_{n\in\mathbb{N}}$ (resp. $(\beta_n)_{n\in\mathbb{N}}$).
- (b) En déduire explicitement u_n et v_n en fonction de n, pour tout $n \in \mathbb{N}$.

Exercice 21 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=2$ et pour tout $n\in\mathbb{N}, u_{n+1}=\frac{5u_n-1}{u_n+3}$

- (a) Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $u_n > 1$.
- (b) En déduire le sens de variations de la suite $(u_n)_{n\in\mathbb{N}}$
- (c) Pour tout $n \in \mathbb{N}$, on pose $v_n = \frac{1}{u_n 1}$.

Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est arithmétique de raison $\frac{1}{4}$

- (d) En déduire, pour tout $n \in \mathbb{N}$, une formule explicite donnant v_n en fonction de n.
- (e) En déduire, pour tout $n \in \mathbb{N}$, une formule explicite donnant u_n en fonction de n.

Exercice 22 Dans chacun des cas suivants, déterminer explicitement u_n en fonction de n, pour tout $n \in$

(a)
$$u_0 = 2$$
 et $u_{n+1} = 3u_n - 2$

(c)
$$u_1 = -\frac{1}{5}$$
 et $u_{n+1} = \frac{4}{5}u_n + \frac{1}{5}$

(b)
$$u_2 = 2$$
 et $u_{n+1} = -2u_n + 3$

(d)
$$u_0 = \frac{3}{2}$$
 et $u_{n+1} = \frac{1}{3}u_n - \frac{1}{3}$

Exercice 23 Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par $u_0=0$ et pour tout $n\in\mathbb{N}, u_{n+1}=2u_n+3^n$. Pour tout $n \in \mathbb{N}$, on pose $v_n = \frac{u_n}{3^n}$

- (a) Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est arithmético-géométrique
- (b) En déduire une expression explicite de u_n en fonction de n, pour tout $n \in \mathbb{N}$.

Exercice 24 Soit $a \in \mathbb{R}^*$. Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 = \frac{1}{2}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = a (1 - u_n)$. Déterminer explicitement u_n en fonction de n, pour tout $n \in \mathbb{N}$.

Exercice 25 Dans chacun des cas suivants, déterminer explicitement u_n en fonction de n, pour tout $n \in$ \mathbb{N} .

(a)
$$u_0 = 0$$
 et $u_1 = 1$ et $u_{n+2} = 3u_{n+1} - 2u_n$

(c)
$$u_3 = \frac{11}{8}$$
 et $u_4 = \frac{7}{8}$ et $4u_{n+2} = 4u_{n+1} - u_n$

(b)
$$u_0 = 1$$
 et $u_1 = \frac{9}{2}$ et $u_{n+2} = 3u_{n+1} - \frac{9}{4}u_n$ (d) $u_0 = 0$ et $u_1 = 2\sqrt{3}$ et $u_{n+2} = 2u_{n+1} + 2u_n$

(d)
$$u_0 = 0$$
 et $u_1 = 2\sqrt{3}$ et $u_{n+2} = 2u_{n+1} + 2u$

Exercice 26 On considère deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que $u_0=1$ et $v_0=0$ et pour tout $n\in\mathbb{N}$

$$\begin{cases} u_{n+1} = 4u_n - 3v_n \\ v_{n+1} = 2u_n - v_n \end{cases}$$

- (a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est récurrente linéaire d'ordre 2
- (b) En déduire une expression explicite de u_n , puis v_n , en fonction de n.

Pour continuer

Généralités sur les suites

Exercice 27 On considère la suite réelle définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n}{1+u_n}$.

- (a) Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $u_n > 0$.
- (b) En déduire le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$

Exercice 28 Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par $u_0=0$ et pour tout $n\in\mathbb{N}, u_{n+1}=\sqrt{1+\left(u_n\right)^2}$.

- (a) Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $u_n \geq 0$.
- (b) En déduire le sens de variations de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 29 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $u_0\geq -1$ et pour tout $n\in\mathbb{N}, u_{n+1}=\frac{1+u_n}{\sqrt{1+(u_n)^2}}-1$.

- (a) Montrer que pour tout $n \in \mathbb{N}, u_n \geq -1$.
- (b) En déduire le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 30 Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite réelle définie pour tout $n\in\mathbb{N}^*$ par $u_n=1-\frac{n}{2^n}$.

- (a) La suite $(u_n)_{n\in\mathbb{N}^*}$ est-elle monotone?
- (b) La suite $(u_n)_{n\in\mathbb{N}^*}$ est-elle majorée?
- (c) La suite $(u_n)_{n\in\mathbb{N}^*}$ est-elle minorée?

Exercice 31 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in\mathbb{R}_+^*$ et pour tout $n\in\mathbb{N}, u_{n+1}=\frac{u_n}{1+u_n}$.

Montrer en raisonnant par récurrence que pour tout $n \in \mathbb{N}$, u_n existe et $u_n = \frac{1}{n + \frac{1}{u_0}}$.

Exercice 32 On considère deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que pour tout $n\in\mathbb{N}$, on ait les relations $u_{n+1}=(u_n)^2+3u_n+1$ et $v_{n+1}=(v_n)^2-v_n+1$.

Déterminer le sens de variations des suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$

Exercice 33 On considère la suite réelle définie par $u_0 = \frac{1}{4}$ et pour tout $n \in \mathbb{N}, u_{n+1} = \sqrt{1 - u_n}$.

Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $0 \le u_n \le 1$.

Exercice 34 (+) On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et pour tout $n\in\mathbb{N}, u_{n+1}=\sqrt{n+u_n}$.

- (a) Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $u_n \geq 0$.
- (b) Déterminer les racines du polynôme $P_n(X) = X^2 X n$, pour $n \in \mathbb{N}$.
- (c) Montrer en raisonnant par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante. On pourra s'aider d'une comparaison de u_n aux racines de P_n , à démontrer.

Exercice 35 On considère une suite $(u_n)_{n\in\mathbb{N}}$ telle que pour tout $n\in\mathbb{N}, u_{n+1}=\sqrt{\frac{1+(u_n)^2}{2}}$.

- (a) Dans cette question, on suppose que $u_0 \in [0, 1]$.
 - (i) Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $u_n \in [0,1]$.
 - (ii) En déduire le sens de variations de la suite $(u_n)_{n\in\mathbb{N}}$.
- (b) Dans cette question, on suppose que $u_0 \in [1, +\infty[$.
 - (i) Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $u_n \in [1, +\infty[$.
 - (ii) En déduire le sens de variations de la suite $(u_n)_{n\in\mathbb{N}}$.

$Suites\ remarquables$

Exercice 36 Dans chacun des cas suivants, déterminer explicitement u_n en fonction de n, pour tout entier n convenable :

(a)
$$u_0 = 7$$
 et $u_{n+1} = u_n - 5$

(b)
$$u_0 = 4$$
 et $u_{n+1} = -2u_n$

(c)
$$u_5 = 12$$
 et $u_{n+1} = u_n + 1$

(d)
$$u_3 = -1$$
 et $u_{n+1} = -\frac{3u_n}{4}$

(e)
$$u_0 = 2$$
 et $3u_{n+1} = 2u_n - 1$

(f)
$$u_2 = 1$$
 et $5u_{n+1} = -u_n + 3$

(g)
$$u_1 = 3$$
 et $u_{n+1} = 2u_n - 5$

(h)
$$u_0 = 0$$
 et $u_{n+1} = -4u_n + 5$

(i)
$$u_1 = 6$$
 et $u_2 = -6$ et $u_{n+2} = -2u_{n+1} + 3u_n$

(j)
$$u_0 = 1$$
 et $u_1 = 1$ et $u_{n+2} = -2u_{n+1} - u_n$

(k)
$$u_0 = 5$$
 et $u_1 = 0$ et $u_{n+2} = u_{n+1} + 6u_n$

(l)
$$u_0 = 6$$
 et $u_1 = 5$ et $6u_{n+2} = 5u_{n+1} - u_n$

Exercice 37 Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=0$ et pour tout $n\in\mathbb{N}, u_{n+1}=\frac{3u_n+1}{2u_n+4}$.

$$(a) \ \ \text{D\'eterminer} \ \ a,b\in\mathbb{R} \ \text{tels que pour tout} \ \ x\in\mathbb{R}\backslash\{-2\}, \frac{3x+1}{2x+4}=a+\frac{b}{2x+4}.$$

- (b) En déduire par récurrence que pour tout $n \in \mathbb{N}$, u_n existe et $-1 < u_n < \frac{1}{2}$.
- (c) En déduire le sens de variations de la suite $(u_n)_{n\in\mathbb{N}}$.
- (d) Pour tout $n \in \mathbb{N}$, on considère la suite auxiliaire $(v_n)_{n \in \mathbb{N}}$ définie pour tout $n \in \mathbb{N}$ par $v_n = \frac{2u_n 1}{u_n + 1}$.
 - (i) Pour tout $n \in \mathbb{N}$, exprimer v_{n+1} en fonction de v_n .
 - (ii) En déduire, pour tout $n \in \mathbb{N}$, une formule explicite donnant v_n en fonction de n.
 - (iii) En déduire, pour tout $n \in \mathbb{N}$, une formule explicite donnant u_n en fonction de n.

Exercice 38 Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par $u_0=1$ et pour tout $n\in\mathbb{N}, u_{n+1}=2u_n+\frac{3-2u_n}{n+1}$. Pour tout $n\in\mathbb{N}$, on pose $v_n=nu_n$.

- (a) Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est arithmético-géométrique.
- (b) En déduire une formule explicite pour v_n , puis u_n en fonction de n.

Exercice 39 Soit $p \in]0,1[$. On considère la suite réelle $(u_n)_{n \in \mathbb{N}}$ telle que $u_0 = 0, u_1 = p$ et pour tout $n \in \mathbb{N}$:

$$u_{n+2} = pu_{n+1} + (1-p)u_n$$

Déterminer explicitement u_n en fonction de n, pour tout $n \in \mathbb{N}$.