Programme de colle nº 17 : Calcul matriciel.

Semaine du lundi 3 février.

Le programme de la semaine précédente est toujours au programme de cette semaine.

Matrices et opérations

- 17.1 Notion de matrice réelle, notation $\mathcal{M}_{n,p}(\mathbb{R})$, coefficients d'une matrice. Matrice nulle de taille (n, p). Deux matrices sont égales si et seulement si elles ont même taille et les mêmes coefficients.
- 17.2 Notion de matrice carrée de taille n, notation $\mathcal{M}_n(\mathbb{R})$. Matrice identité de taille n. Coefficients diagonaux d'une matrice carrée. Matrice ligne de taille n, matrice colonne de taille n. k-ième ligne (ou colonne) d'une matrice donnée.
- 17.3 Somme de matrices. Propriétés : associativité, commutativité, neutralité de la matrice nulle. Matrice opposée d'une matrice A, notation A - B.
- ${f 17.4}$ Produit d'une matrice par un réel. Propriétés : compatibilité avec le produit des réels, produit d'une matrice par 1 ou -1, distributivités de \cdot sur la somme de matrices et sur la somme de réels.
- 17.5 Produit matriciel : définition et exemples. Cas particulier du produit d'une matrice ligne par une matrice colonne. Propriétés : associativité, compatibilité avec le produit par un réel, distributivité du produit matriciel sur la somme de matrices. Produit par une matrice identité, par une matrice nulle.
- 17.6 La règle du produit nul est fausse pour le produit matriciel. On ne peut pas à priori simplifier une matrice dans une égalité de produit. Exemples.
- 17.7 Transposée d'une matrice : définition et propriétés usuelles $({}^t({}^tA) = A,$ compatibilité avec le produit par un réel, ${}^{t}(AB) = {}^{t}B^{t}A$).

Matrices carrées

- 17.8 Remarque fondamentale : si A et B sont carrées de taille n, alors A+Bet AB le sont aussi.
- 17.9 Puissances d'une matrice carrée. Formule $A^{k+l}=A^kA^l$. Transposition et puissances.
- 17.10 Matrices carrées qui commutent, exemple. Ensemble des matrices qui commutent avec $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$. λI_n commute avec toute matrice carrée de taille n. Si A et B commutent, alors A^k et B^l commutent pour tous entiers naturels k
- et l.
- 17.11 Identités vraies en présence de deux matrices qui commutent : si A et Bcommutent, alors $(AB)^n = A^nB^n$ pour tout $n \in \mathbb{N}$, les identités remarquables usuelles du second degré sont valables, et la formule du binôme de Newton est valable.
- **17.12** Calcul des puissances de $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ à l'aide de la formule du binôme de

Newton.

Python

17.13 Pas de séance de Python cette semaine en raison d'un incident au lycée mardi (se reporter au programme précédent).

Quelques questions de cours

Tous les élèves commenceront leur colle par la première question de cours, avant une seconde question de cours.

- 1. Définir l'opération matricielle suivante (au choix de l'interrogation) et effectuer le calcul matriciel suivant (au choix de l'interrogation, sans variables, sur des matrices de taille raisonnable.)
- 2. Énoncer les propriétés du produit matriciel. Démontrer la distributivité du produit matriciel sur la somme matricielle (propr. 23 (iii)).

- 3. Énoncer les propriétés de la transposition. Démontrer la règle portant sur le produit matriciel.
- 4. Montrer que pour toute matrice carrée A et pour tous entiers naturels k et n : $A^kA^l=A^{k+l}$.
- 5. Définir : "les matrices A et B commutent", en contextualisant. Montrer que si A et B commutent, alors A^k et B^l commutent pour tous entiers naturels k et l.
- 6. Énoncer les identités remarquables vraies en présence de matrices qui commutent (prop. 37). Démontrer que si A et B commutent, alors $(AB)^n = A^nB^n$ pour tout entier naturel n.
- 7. On pose $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ et $B = A I_3$. Calculer B^k pour tout entier naturel k. En déduire, à l'aide de la formule du binôme de Newton, A^n pour tout entier naturel n.