Programme de colle nº 24 : Espaces vectoriels.

Semaine du lundi 7 avril.

Le programme de la semaine précédente est toujours au programme de cette semaine.

E désigne toujours un espace vectoriel donné par $E=\mathbb{R}^n$ ou $E=\mathcal{M}_{n,1}(\mathbb{R})$, pour un certain entier n.

Sous-espaces vectoriels

- **24.1** Notion de sous-espace vectoriel. Caractérisation en trois points des sous-espaces vectoriels. Stabilité par combinaison linéaire de tout sous-espace vectoriel.
- **24.2** L'ensemble des solutions d'une équation linéaire homogène à n inconnues est un sous-espace vectoriel de \mathbb{R}^n . L'intersection de sous-espaces vectoriels est un sous-espace vectoriel. L'ensemble des solutions d'un système linéaire homogène à n inconnues est un sous-espace vectoriel de \mathbb{R}^n .
- 24.3 Sous-espace vectoriel engendré par une famille de vecteurs, notation

 $\operatorname{Vect}(u_1,...,u_k)$. Pour toute famille $(u_1,...,u_k)$ de vecteurs de E, $\operatorname{Vect}(u_1,...,u_k)$ est un sous-espace vectoriel de E.

Caractérisation des inclusions type $\text{Vect}(u_1,...,u_k) \subset F$ où F est un sous-espace vectoriel de E.

24.4 Base d'un sous-espace vectoriel. Proposition : S'il existe p tel que $u_p \in \text{Vect}(u_1,...,u_{p-1},u_{p+1},...,u_k)$ alors :

 $Vect(u_1, ..., u_k) = Vect(u_1, ..., u_{p-1}, u_{p+1}, ..., u_k).$

Sinon, $(u_1, ..., u_k)$ est une base de $Vect(u_1, ..., u_k)$. Exemples d'utilisations.

24.5 Notion de famille libre, de famille liée. Caractérisation des familles libres. Toute sous-famille d'une famille libre est libre. $(u_1, ..., u_k)$ est libre si et seulement si $u_p \notin \text{Vect}(u_1, ..., u_{p-1}, u_{p+1}, ..., u_l)$.

Quelques questions de cours

- 1. Définir la notion de sous-espace vectoriel. Énoncer la caractérisation en trois points des sous-espaces vectoriels. Montrer que l'ensemble des solutions d'une équation linéaire homogène à n inconnues est un sous-espace vectoriel de \mathbb{R}^n .
- 2. Énoncer et démontrer la proposition (30) relative à la stabilité par combinaison linéaire de tout sous-espace vectoriel d'un espace vectoriel.
- 3. Que dire de l'intersection de deux sous-espaces vectoriels d'une espace vectoriel? Le démontrer, puis montrer que l'ensemble des solutions d'un système linéaire homogène à n inconnues est un sous-espace vectoriel de \mathbb{R}^n .
- 4. Énoncer et démontrer la proposition et définition définissant la notation $Vect(u_1, ..., u_k)$.
- 5. Définir la notion de base d'un sous-espace vectoriel. Déterminer une base de l'ensemble des solutions de l'équation x + y + z = 0.
- 6. Énoncer et démontrer la proposition (44) donnant une condition pour qu'une famille de vecteurs $(u_1, ..., u_k)$ soit une base de $Vect(u_1, ..., u_k)$.
- 7. Définir la notion de famille libre. Énoncer et démontrer la proposition (48) donnant une caractérisation des familles libres.
- 8. Soit $(u_1,...,u_k)$ une famille de vecteurs de E. Montrer l'équivalence entre :
 - $\forall p \in [1, k], u_p \notin \text{Vect}(u_1, ..., u_{p-1}, u_{p+1}, ..., u_k)$, et
 - $(u_1,...,u_k)$ est libre.