Programme de colle nº 1 : Équations, logique, ensembles et raisonnements.

Semaine du lundi 15 septembre.

Le programme de la semaine précédente est toujours au programme de cette semaine.

Résolutions d'équations et d'inéquations

- 1.1 Notion d'équation et d'inéquation. Domaine de définition. Exemples.
- 1.2 Notion de solution d'une (in)équation. Ensemble des solutions. Résolution d'une (in)équation, incluant l'éventuelle recherche du domaine de définition
- 1.3 Premières techniques de résolution d'(in)équations (somme, produit, application d'une fonction strictement monotone, produit ou quotient nul, règle des signes, utilisation du discriminant des polynômes du second degré).
- 1.4 Techniques supplémentaires : (in)équations à paramètres, changement de variable.

Logique, ensembles et raisonnements

- **1.5** Ensembles \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \emptyset , notations \mathbb{R}^* , \mathbb{R}_+ etc.
- 1.6 Éléments d'un ensemble, symbole \in . Notion d'inclusion. Quantificateurs.
- 1.7 Notion de proposition, de proposition à paramètre. Propositions construites à l'aide de quantificateurs.
- 1.8 Ensembles définis en extension et en compréhension. Intervalles réels, intervalles entiers.
- ${\bf 1.9}$ Connecteurs logiques : et, ou, non. Définition à l'aide d'une table de vérité.
- 1.10 Réunion, intersection et différence ensembliste. Lien avec les connecteurs logiques, dans le cas d'ensembles définis en compréhension comme parties d'un même ensemble E.
- 1.11 Implication et équivalence. Implication réciproque d'une implication.
- 1.12 Caractérisation de l'implication avec "ou" et "non". Distributivités entre "et" et "ou".
- 1.13 Négation d'une proposition : lois de De Morgan, négation d'une implication, négation d'une équivalence, négation d'une proposition quantifiée.
- 1.14 Démonstration d'une implication : méthode directe, utilisation de la contraposée. Démonstration d'une équivalence par double implication.

1.15 Démonstrations d'énoncés quantifiés.

Quelques questions de cours

(sera terminé lundi).

Tous les élèves sont attendus, lors d'une première petite question de cours, sur un calcul faisant intervenir des fractions, des puissances et/ou les propriétés dites "de morphisme" de l'exponentielle et du logarithme.

- 1. Résoudre l'équation $\ln(x + \frac{1}{x}) = \ln(3)$. toute variante similaire possible (les interrogateurs et interrogatrices peuvent modifier l'énoncé sans trop modifier la difficulté).
- 2. Résoudre l'inéquation $\ln(\ln(x)) > 0$, toute variante similaire possible.
- 3. Résoudre l'inéquation $\ln(\frac{2x+1}{x}-1) > 1$.
- 4. Soit $m \in \mathbb{R}$, résoudre l'équation d'inconnue réelle x donnée par : $mx^2 2mx + 2 = 0$.
- 5. Résoudre l'équation |x-2|=|x+3|, toute variante similaire possible.
- 6. Soit $m \in \mathbb{R}_+$. Résoudre l'équation $\frac{e^x + e^{-x}}{2} = m$, d'inconnue réelle x.
- 7. Définir les trois connecteurs logiques suivants (au choix de l'interrogation, parmi : non, ou, et, \implies , \iff) à l'aide d'une table de vérité.
- 8. Énoncer les lois de De Morgan et la caractérisation de l'implication à l'aide de "ou" et "non". Démontrer (avec une table de vérité) l'un de ces point, au choix de l'interrogation. Nier l'énoncé suivant : (au choix de l'interrogation).
- 9. Définir la notion de contraposée d'une implication. Donner la contraposée de l'implication suivante : (au choix de l'interrogation).

10. Montrer que, pour tout entier relatif n , n est pair si et seulement si n^2 est pair.															