TD de mathématiques n°5: Polynômes

Pour commencer

Second degré

Exercice 1 Mettre sous forme canonique les trinômes suivants, puis dresser leurs tableaux de variations:

(a)
$$x \mapsto x^2 - 2x + 3$$

(b)
$$x \mapsto x^2 - 4$$

(c)
$$x \mapsto -3x^2 + 6x + 8$$
 (d) $x \mapsto 2(x-2)(4-x)$

(d)
$$x \mapsto 2(x-2)(4-x)$$

Exercice 2 Déterminer les racines et les tableaux de signe de chacun des trinômes suivants :

(a)
$$x \mapsto x^2 - 4$$

(b)
$$x \mapsto -x^2 + 5x - 6$$
 (c) $x \mapsto x^2 + x - 1$ (d) $x \mapsto (3 - 2x)(x - 5)$

(c)
$$x \mapsto x^2 + x - 1$$

(d)
$$x \mapsto (3-2x)(x-5)$$

Exercice 3 Résoudre les équations et inéquations suivantes :

(a)
$$x^4 + 2x^2 - 3 = 0$$

(d)
$$x^4 - 4x^2 + 3 < 0$$

(a)
$$x^4 + 2x^2 - 3 = 0$$
 (d) $x^4 - 4x^2 + 3 \le 0$ (g) $x^4 - x^2 - 2 > 0$

(j)
$$e^x - e^{-x} = 2$$

(b)
$$x^4 - 4x^2 + 3 = 0$$

(e)
$$x^4 - x^2 - 2 = 0$$

(h)
$$e^x + e^{-x} \le 4$$

(a)
$$x^4 - 4x^2 + 3 = 0$$
 (b) $x^4 - 4x^2 + 3 = 0$ (c) $x^4 - x^2 - 2 = 0$ (d) $x^4 - x^2 - 2 = 0$ (e) $x^4 - x^2 - 2 = 0$ (f) $x^4 - x^2 - 2 = 0$ (g) $x^4 - x^2 - 2 = 0$ (h) $x^4 - x^2 - 2 = 0$

(c)
$$x^4 + 2x^2 - 3 \le 0$$

$$(f) e^x + e^{-x} = 4$$

(c)
$$x^4 + 2x^2 - 3 \le 0$$
 (f) $e^x + e^{-x} = 4$ (i) $3x^4 + 5x^2 - 2 = 0$ (l) $e^x - e^{-x} > 2$

(1)
$$e^x - e^{-x} > 2$$

Identification des coefficients

Exercice 4 Trouver $a, b, c \in \mathbb{R}$ tels que :

(a)
$$a(X+1) + b(X-1) + c(X^2-1) = X^2$$
.

(b)
$$a(X^2 + X) + b(X^2 - X) + c(X^2 + 1) = 2(X^2 - 1)$$

Exercice 5 Trouver $a, b, c \in \mathbb{R}$ tels que :

(a)
$$\frac{1}{X^2+X} = \frac{a}{X} + \frac{b}{X+1}$$
.

(c)
$$\frac{4X-2}{X(X^2-1)} = \frac{a}{X} + \frac{b}{X-1} + \frac{c}{X+1}$$
.

(b)
$$\frac{1}{X^2-1} = \frac{a}{X-1} + \frac{b}{X+1}$$
.

(d)
$$\frac{2}{X(X+1)(X+2)} = \frac{a}{X} + \frac{b}{X+1} + \frac{c}{X+2}$$

Exercice 6 En utilisant les résultats de l'exercice précédent, calculer les valeurs des sommes :

(a)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$

(c)
$$\sum_{k=2}^{n} \frac{4k-2}{k(k^2-1)}$$

(b)
$$\sum_{k=2}^{n} \frac{1}{k^2 - 1}$$

(d)
$$\sum_{k=1}^{n} \frac{2}{k(k+1)(k+2)}$$

Exercice 7 Déterminer les polynômes $P \in \mathbb{R}_3[X]$ tels que P(1) = P(-1) = 1 et P'(1) = 0 et P'(-1) = 0

Exercice 8 Déterminer l'ensemble des polynômes $P \in \mathbb{R}[X]$ tels que $P'(X) - XP(X) = X^2 - 1$.

Exercice 9

- (a) Déterminer l'ensemble des polynômes $P \in \mathbb{R}[X]$ tels que P(X) = XP'(X).
- (b) Déterminer l'ensemble des polynômes $P \in \mathbb{R}[X]$ tels que 2P(X) = XP'(X).
- (c) Soit $n \in \mathbb{N}^*$. Déterminer l'ensemble des polynômes $P \in \mathbb{R}[X]$ tels que nP(X) = XP'(X).

Division euclidienne

Exercice 10 Réaliser la division euclidienne de :

(a)
$$3X^3 - X^2 + X + 1$$
 par $X - 1$

(b)
$$X^4 - 5X^3 + 4X^2 - 2X + 1$$
 par $X^2 - 4X - 3$

(c)
$$X^4 + X^3 + 2X + 1$$
 par $X^2 - 1$

(d)
$$X^3 - 2X + 1$$
 par $X - 1$

(e)
$$2X^5 - X^3$$
 par $X^3 + 1$

Exercice 11 On pose
$$P(X) = X^2$$
.

- (a) Effectuer la division euclidienne de P(X) par X + 1.
- (b) En déduire qu'il existe $a,b,c\in\mathbb{R}$ tels que pour tout $x\in\mathbb{R}\setminus\{-1\},\frac{x^2}{x+1}=ax+b+\frac{c}{x+1}.$

Exercice 12 Pour quelle(s) valeur(s) $a, b \in \mathbb{R}$ le polynôme $X^2 - 3X + 2$ divise-t-il le polynôme $aX^3 + bX + 1$?

Racines et factorisation

Exercice 13 Factoriser le plus possible le polynôme $P(X) = X^4 - X^3 - 2X^2 + X + 1$. Puis, Résoudre l'équation P(x) = 0, d'inconnue $x \in \mathbb{R}$.

Exercice 14 Factoriser le plus possible les polynômes :

(a)
$$X^3 - 2X^2 + 2X - 1$$

(c)
$$X^3 - 4X^2 - 7X + 10$$

(q) $X^3 + 3X - 4$ par X - 1

(h) $X^4 + 1$ par $X^2 - \sqrt{2}X + 1$

(b)
$$X^4 - 2X^3 + 2X^2 - 2X + 1$$

(d)
$$2X^4 + 3X^3 - 3X^2 - 7X - 3$$

(f) $X^4 - 6X^3 + 13X^2 - 12X + 4$ par $X^2 - 3X + 2$

(i) $2X^3 + 7X^2 - 2X - 3$ par $2X^2 - X + 1$

(i) $X^4 - 2X^3 - 2X^2 + 2X + 1$ par $X^2 - 1$

Exercice 15 Soit $b \in \mathbb{R}$ et $P(X) = X^3 - b^3 \in \mathbb{R}_3[X]$.

- (a) Déterminer une racine évidente de P, puis factoriser P le plus possible.
- (b) En déduire l'identité remarquable: $\forall a, b \in \mathbb{R}, a^3 b^3 = (a b) (a^2 + ab + b^2)$.
- (c) En déduire l'identité remarquable : $\forall a, b \in \mathbb{R}, a^3 + b^3 = (a+b)(a^2 ab + b^2)$.
- (d) Factoriser le plus possible le polynôme $Q(X) = X^6 1$.

Exercice 16 Montrer que pour tout $n \in \mathbb{N}^*$, le polynôme $X^2 - 3X + 2$ divise le polynôme $(X-2)^{2n} + (X-1)^n - 1$.

Exercice 17 Soit $n \in \mathbb{N}$. Déterminer toutes les éventuelles racines du polynôme $P(X) = \sum_{k=0}^{2n+1} X^k$.

Exercice 18 Soit $n \in \mathbb{N}$ et $P, Q \in \mathbb{R}_n[X]$. On suppose que $\sum_{k=0}^n |P(k) - Q(k)| = 0$. Montrer que P = Q.

Exercice 19

- (a) Montrer que la fonction valeur absolue n'est pas une fonction polynomiale.
- (b) Montrer que la fonction exponentielle n'est pas une fonction polynomiale.
- (c) Montrer que la fonction partie entière n'est pas une fonction polynomiale.

Exercice 20 Déterminer tous les polynômes $P \in \mathbb{R}[X]$ tels que pour tout $x \in \mathbb{R}, P(x+1) = P(x)$.

Exercice 21 Utile pour la suite Soit $n \ge 2$ un entier. Considérons $P(X) = X^2 - 3X + 2$. Notons R_n le reste de la division euclidienne de X^n par P(X).

2

- (a) Montrer que P admet deux racines distinctes α et β .
- (b) Déterminer $R_n(\alpha)$ et $R_n(\beta)$.
- (c) En déduire une expression de $R_n(X)$.

Pour continuer

Exercice 22 Déterminer toutes les valeurs $a, b \in \mathbb{R}$ telles que $X^2 - aX + 1$ divise $X^4 - X + b$.

Exercice 23 Trouver $a, b, c \in \mathbb{R}$ tels que :

(a)
$$aX(X-1) + bX(X+1) + c = X+1$$

(b)
$$aX(X-1)(X-2) + bX(X+1)(X+2) + c(X^2-1) = 4X^2 + 2$$

(c)
$$aX(1-X)(1+X) + b(1-X)(1+X) + cX = 2X^3 + X^2 + X - 1$$

Exercice 24 Trouver $a, b, c \in \mathbb{R}$ tels que :

(a)
$$\frac{2X^2 - 4X + 5}{(X+4)^3} = \frac{a}{(X+4)^3} + \frac{b}{(X+4)^2} + \frac{c}{X+4}$$
.

(b)
$$\frac{X^2+1}{X-2} = aX + b + \frac{c}{X-2}$$
.

Exercice 25 Déterminer l'unique polynôme $P \in \mathbb{R}_2[X]$ tel que P(0) = P(1) = 1 et P'(1) = 1.

Exercice 26 Déterminer tous les polynômes $P \in \mathbb{R}[X]$ tels que 4P(X) = XP'(X) + P''(X).

Exercice 27 Factoriser le plus possible le polynôme $P(X) = -X^3 - 3X^2 + 6X + 8$. Résoudre l'inéquation $P(x) \ge 0$, d'inconnue $x \in \mathbb{R}$.

Exercice 28 Factoriser le plus possible les polynômes :

(a)
$$X^3 - X^2 - 3X + 3$$

(c)
$$X^3 - X^2 - 3X - 1$$

(b)
$$X^4 - 6X^3 + 13X^2 - 12X + 4$$

(d)
$$X^4 - 6X^3 + 10X^2 - 8$$

Exercice 29 Soit $a \in \mathbb{R}$. On considère le polynôme $P(X) = X^3 - 3X^2 - a^2X + 2X + a^2$.

- (a) Factoriser le polynôme P le plus possible.
- (b) Résoudre l'inéquation $P(x) \ge 0$, d'inconnue $x \in \mathbb{R}$.

Exercice 30 Soit $n \in \mathbb{N}$ et $P \in \mathbb{R}_n[X]$. On suppose que $\sum_{k=0}^n (P(k))^2 = 0$. Montrer que P = 0.