Corr<u>igé du DM</u> n°1

A rendre le 17 octobre.

Exercice 1

Soit I un intervalle ouvert, et f une fonction croissante sur I. Montrons que f n'admet pas de maximum sur I.

I étant un intervalle ouvert, on dispose de a et b réels, ou éventuellement $a=+\infty$ ou $b=-\infty$, tels que :

$$I =]a, b[.$$

Soit $x_0 \in I$, montrons que f n'admet pas de maximum en x_0 sur I.

Premier cas : si $b = +\infty$.

Posons $x = x_0 + 1$.

On a $a < x_0 < x_0 + 1$ donc $a < x_0 + 1$ donc $x = x_0 + 1 \in I =]a, +\infty[$ (avec la convention usuelle si $a = -\infty$).

On a donc $(x_0, x) \in I^2$ et $x_0 < x$. Par croissante stricte de f sur I:

$$f(x_0) < f(x)$$
.

 $x \in I$, donc ceci montre que f n'admet pas de maximum en x_0 sur I.

Second cas: Sinon, $b \in \mathbb{R}$.

Dans ce cas, posons $x = \frac{x_0 + b}{2}$. (Idée: x est supérieur à x_0 et appartient à I, c'est le milieu du segment $[x_0, b]$ - faire un dessin).

On a $x_0 < b \text{ donc}$: $2x_0 < x_0 + b \text{ et } x_0 + b < 2b$.

Donc (2 > 0): $x_0 < x < b$.

Puisque $a < x_0$, on a par transitivité :

$$a < x < b$$
.

Donc $(x_0, x) \in I^2$, et $x_0 < x$. Par croissance stricte de f sur I:

$$f(x_0) < f(x).$$

Donc f n'admet pas de maximum en x_0 sur I.

Conclusion : Dans tous les cas, f n'admet pas de maximum en x_0 sur I.

Ceci est donc vrai pour tout $x_0 \in I$: f n'admet pas de maximum sur I, d'où le théorème.

Exercice 2

1. $x \mapsto 1 + x$ a pour domaine de définition $\mathbb R$ et est dérivable sur $\mathbb R$.

 $x \mapsto \sqrt{x}$ a pour domaine de définition \mathbb{R}_+ et est dérivable sur \mathbb{R}_+^* .

Par composition, $f: x \mapsto \sqrt{1+x}$ a pour domaine de définition $D = \{x \in \mathbb{R} | 1+x \in \mathbb{R}_+\}$ et est dérivable sur $D' = \{x \in \mathbb{R}, 1+x \in \mathbb{R}_+^*\}$. Or :

$$\forall x \in \mathbb{R}, (1+x \ge 0 \iff x \ge -1) \text{ et } (1+x > 0 \iff x > -1).$$

Donc f a pour domaine de définition $D = [-1, +\infty[$ et est dérivable sur $D' =]-1, +\infty[$.

Par composition:

$$\forall x \in D', f'(x) = \frac{1}{2\sqrt{1+x}} > 0$$

(car pour tout x > -1, x + 1 > 0 donc $\sqrt{x+1} > 0$.)

f' étant strictement positive, f est croissante sur D' (faire un tableau de variations pour répondre à la question).

2. Par somme, $x \mapsto f(x) - x$ a pour domaine de définition $D \cap \mathbb{R} = D$.

Soit $x \in D$.

Si $x \in [-1, 0[, x < 0 \le f(x) \text{ (positivité de la racine carrée) donc } f(x) - x > 0.$

Sinon, $x \ge 0$ et $f(x) \ge 0$ donc par croissance stricte de la fonction $t \mapsto t^2$ sur \mathbb{R}_+ :

$$f(x) - x > 0 \iff \sqrt{x+1} > x \iff x+1 > x^2 \iff x^2 - x - 1 < 0.$$

(et la même chaîne d'équivalence est vraie avec des égalités).

 X^2-X-1 est un polynôme du second degré, de discriminant 5>0 donc admet pour racines $r_1=\frac{1-\sqrt{5}}{2}$ et $r_2=\frac{1+\sqrt{5}}{2}$. Son coefficient dominant étant 1>0, ce polynôme est strictement négatif entre ses racines, nul en ses racines et strictement positif à l'extérieur de ses racines.

Enfin, $\sqrt{5} > 1$ donc $r_1 < 0 < r_2$.

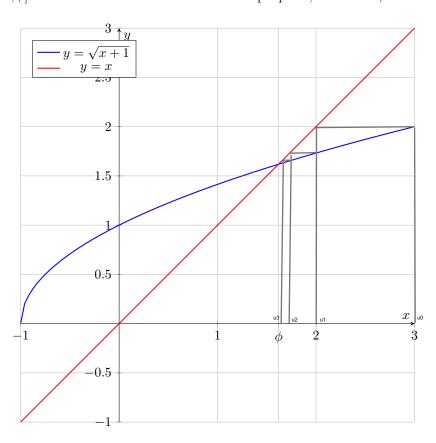
On a donc le tableau de signe suivant (complété avec l'étude du cas $x \in [-1,0[)$:

x	-1		r_2		$+\infty$	En particulier, en posant $\phi = r_2 =$	$1 + \sqrt{5}$
f(x) - x		+	0	-		$\phi = r_2 = 1$	2

 ϕ est l'unique point d'annulation de la fonction $x \mapsto f(x) - x$ sur \mathbb{R}_+ .

3. $\forall x \in D, f(x) \ge x \iff f(x) - x \ge 0$.

Donc d'après la question précédente, la courbe de f est en dessous de la courbe de $x \mapsto x$ sur $[\phi, +\infty[$, au dessus sur $[-1, \phi]$ et ces courbes s'intersectent en un unique point, d'abscisse ϕ .



4. On conjecture que u est décroissante, majorée par $u_0 = 3$, minorée par ϕ et convergente vers ϕ .

A partir de maintenant, pour les questions 5 à 8, il y avait de nombreuses façon de procéder. Ce corrigé suit une méthode efficace, en montrant dès la question suivante que $u_n \ge \phi$ pour tout $n \in \mathbb{N}$ ce qui simplifie la suite.

5. Notons, pour tout $n \in \mathbb{N}$, P(n) la proposition : " u_n existe et $u_n \ge \phi$ ".

Montrons par récurrence : $\forall n \in \mathbb{N}, P(n)$.

Initialisation : Montrons P(0).

 u_0 est bien défini par l'égalité $u_0 = 3$.

De plus, $\sqrt{5} < 3$ car 5 < 9, donc $\phi = \frac{1 + \sqrt{5}}{2} < \frac{4}{2} = 2 < 3 = u_0$.

Donc $u_0 \ge \phi$. D'où l'initialisation.

Hérédité : Soit $n \in \mathbb{N}$. Supposons P(n) et montrons P(n+1).

Par P(n), u_n existe et $u_n \ge \phi$.

donc $1 + u_n$ existe et $1 + u_n \ge \phi + 1$. En particulier $(\phi \ge 0)$, $1 + u_n \ge 0$.

donc u_{n+1} est bien défini par l'égalité $u_{n+1} = \sqrt{1 + u_n}$.

De plus, par croissance de la fonction racine carrée, et vu $1+u_n \ge 1+\phi$:

$$u_{n+1} = \sqrt{1 + u_n} \ge \sqrt{1 + \phi}$$
.

Or, $f(\phi) - \phi = 0$ donc $\sqrt{1 + \phi} = \phi$.

On a donc : $u_{n+1} \ge \phi$.

Ceci termine la démonstration de P(n+1), d'où l'hérédité.

On a bien montré par récurrence que, pour tout $n \in \mathbb{N}$, u_n existe et $u_n \geq \phi$.

```
import numpy as np
def f(x):
    return( np.sqrt(1+x) )

def U(n):
    u=3
    for k in range(n):
        u=f(u)
    return(u)
```

7. Ici, on pouvait aussi procéder par récurrence en montrant : $\forall n \in \mathbb{N}, P(n) : "u_{n+1} \geq u_n"$. On utilise alors la croissance de f, et un autre argument pour l'initialisation.

Soit $n \in \mathbb{N}$.

Par la question précédente, $u_n \ge \phi$.

D'après la question 2, on a donc : $f(u_n) - u_n \le 0$.

Donc $u_{n+1} = f(u_n) \le u_n$.

Ceci étant vrai pour tout $n \in \mathbb{N}$: $(u_n)_{n \in \mathbb{N}}$ est décroissante.

8. Par décroissance de u:

$$\forall n \in \mathbb{N}, u_n < u_0 = 3.$$

De plus, par la question 4 : $\forall n \in \mathbb{N}, u_n \geq \phi$.

Donc |u| est bornée, minorée par ϕ et majorée par 3.

9. Soient x et y des réels positifs.

$$f(x) - f(y) = \sqrt{1+x} - \sqrt{1+y} = \frac{(1+x) - (1+y)}{\sqrt{1+x} + \sqrt{1+y}} = \frac{x-y}{\sqrt{1+x} + \sqrt{1+y}}$$

 $\operatorname{car} \sqrt{1+x} + \sqrt{1+y} \neq 0, \operatorname{car} \operatorname{par} \operatorname{positivit\'e} \operatorname{de} x \operatorname{et} y : \begin{cases} \sqrt{1+x} \geq \sqrt{1} \\ \sqrt{1+y} \geq \sqrt{1} \end{cases}, \operatorname{donc} (1) : \sqrt{1+x} + \sqrt{1+y} \geq 2.$

Donc:

$$|f(x) - f(y)| = \left| \frac{x - y}{\sqrt{1 + x} + \sqrt{1 + y}} \right| = \frac{|x - y|}{|\sqrt{1 + x} + \sqrt{1 + y}|}$$

De plus, par (1): $|\sqrt{1+x} + \sqrt{1+y}| = \sqrt{1+x} + \sqrt{1+y}$.

Donc:

$$|f(x) - f(y)| = \frac{|x - y|}{\sqrt{1 + x} + \sqrt{1 + y}}.$$

De plus, par (1): $\frac{1}{\sqrt{1+x} + \sqrt{1+y}} \le \frac{1}{2}$.

Donc $(|x-y| \ge 0)$:

$$|f(x) - f(y)| = \frac{|x - y|}{\sqrt{1 + x} + \sqrt{1 + y}} \le \frac{|x - y|}{2}$$

Finalement:

$$\forall (x,y) \in (\mathbb{R}_+)^2, |f(x) - f(y)| \le \frac{|x-y|}{2}.$$

10. Montrons par récurrence : $\forall n \in \mathbb{N}, P(n) : "|u_n - \phi| \le \frac{|u_0 - \phi|}{2^n}$."

Initialisation : $|u_0 - \phi| = \frac{|u_0 - \phi|}{1} \le \frac{|u_0 - \phi|}{2^0}$ car $2^0 = 1$, d'où l'initialisation.

Hérédité : Soit $n \in \mathbb{N}$. Supposons P(n) et montrons P(n+1).

D'après la question précédente $(u_n \ge 0 \text{ et } \phi \ge 0)$:

$$|f(u_n) - f(\phi)| \le \frac{|u_n - \phi|}{2}.$$

Or, $f(u_n) = u_{n+1}$ et $f(\phi) = \phi$.

Donc:

$$|u_{n+1} - \phi| \le \frac{|u_n - \phi|}{2}.$$

Par $P(n): |u_n - \phi| \le \frac{|u_0 - \phi|}{2^n}$. Donc (1/2 > 0):

$$\frac{|u_n - \phi|}{2} \le \frac{|u_0 - \phi|}{2 \cdot 2^n} = \frac{|u_0 - \phi|}{2^{n+1}}.$$

Par transitivité:

$$|u_{n+1} - \phi| \le \frac{|u_0 - \phi|}{2^{n+1}}.$$

Ceci montre P(n+1) d'où l'hérédité.

On a bien montré par récurrence : $\forall n \in \mathbb{N}, |u_n - \phi| \leq \frac{|u_0 - \phi|}{2^n}$.

Enfin, $2^n \xrightarrow[n \to +\infty]{} +\infty$ donc par inverse, $\frac{1}{2^n} \xrightarrow[n \to +\infty]{} 0$ puis par produit :

$$\frac{|u_0 - \phi|}{2^n} \xrightarrow[n \to +\infty]{} 0.$$

On a donc :

$$\begin{cases} \forall n \in \mathbb{N}, 0 \le |u_n - \phi| \le \frac{|u_0 - \phi|}{2^n} \\ 0 \xrightarrow[n \to +\infty]{} 0 \\ \frac{|u_0 - \phi|}{2^n} \xrightarrow[n \to +\infty]{} 0 \end{cases}.$$

Par le théorème des gendarmes : $|u_n - \phi| \xrightarrow[n \to +\infty]{} 0$.

Donc: $u_n - \phi \xrightarrow[n \to +\infty]{} 0$.

Par somme : $u_n \xrightarrow[n \to +\infty]{} \phi$.

Exercice 3

1. Montrons que f est constante en montrant : $\forall x \in \mathbb{R}, f(x) = f(0)$.

Soit $x \in \mathbb{R}$.

 $(x,0) \in \mathbb{R}^2$ donc par hypothèse : $f(x) \le f(0)$.

 $(0,x) \in \mathbb{R}^2$ donc par hypothèse : $f(0) \le f(x)$.

On a donc $f(x) \le f(0)$ et $f(0) \le f(x)$: ceci montre f(x) = f(0).

Ceci étant v
rai pour tout $x \in \mathbb{R}$, f est constante.

2. Montrons que A et B sont égaux et ne contiennent qu'un élément.

A étant non vide, on dispose de $a \in A$ (fixé pour toute cette démonstration).

• Montrons $B \subset \{a\}$.

Soit $b \in B$.

 $a \in A$ et $b \in B$ donc, par hypothèse : b = a.

Donc $b \in \{a\}$.

Ceci étant vrai pour tout $b \in B$, on a bien montré $B \subset \{a\}$.

• Montrons $\{a\} \subset B$.

Il suffit de montrer que $a \in B$.

Or, B étant non vide, on dispose d'un élément b de B.

Alors, $a \in A$ et $b \in B$ donc par hypothèse, a = b.

$$\begin{cases} b \in B \\ a = b \end{cases} \quad \text{donc } a \in B, \text{ d'où } \{a\} \subset B.$$

• Par double inclusion, on a montré $B = \{a\}$.

• Montrons $A = \{a\}$. On a $a \in A$ donc $\{a\} \subset A$.

• Montrons enfin $A \subset \{a\}$.

Soit $x \in A$, montrons x = a pour conclure.

 $a \in B$ car on a montré $B = \{a\}$. Ainsi, $x \in A$ et $a \in B$ donc par hypothèse : x = a.

Ceci montre $A \subset \{a\}$, ce qui termine la démonstration.

Finalement:

$$A = B = \{a\}.$$