TD de mathématiques n°7: Ensembles et applications

Pour commencer

Ensembles

Exercice 1 Soit E un ensemble usuel (un ensemble de nombres, de fonctions, de suites, d'applications... non vide) et soit $x \in E$. Parmi les propriétés ci-dessous, lesquelles sont correctes?

- (a) $x \in \{x\}$

- (q) $x \subset \{\{x\}\}$

- (b) $\{x\} \in \{x\}$
- (c) $x \in \{\{x\}\}\$ (e) $x \subset \{x\}$ (d) $\{x\} \in \{\{x\}\}\$ (f) $\{x\} \subset \{x\}$
- $(h) \{x\} \subset \{\{x\}\}$

(HP: Quelles énoncés deviennent corrects pour $x = \emptyset$ dans le cas où E est un ensemble d'ensembles?)

Exercice 2 Soient E un ensemble et $A, B \subset E$. Simplifier les expressions :

- (a) $(A \cap B) \cup (A \cap \bar{B})$
- (b) $(A \cap B) \cap (A \cap \bar{B})$
- (c) $(A \cap \bar{B}) \cup (\bar{A} \cap B) \cup (A \cap B)$

Exercice 3 Soit E un ensemble et $A, B \subset E$. Montrer que $A \cup B = A \cap B \iff A = B$.

Exercice 4 Soit E un ensemble et $A, B \subset E$. Montrer que $\bar{A} \subset B \iff \bar{A} \cap \bar{B} = \emptyset \iff E = A \cup B$.

Exercice 5 Soit E un ensemble et $A, B, C \subset E$.

On suppose que $A \subset B \cap C$ et $B \cup C \subset A$. Montrer que A = B = C.

Exercice 6 Soient A, B et C trois sous-ensembles d'un ensemble E. On suppose que $A \cup B = A \cap C$, $B \cup C = A \cap C$ $B \cap A$ et $C \cup A = C \cap B$. Montrer que A = B = C.

Soit E un ensemble. Pour tout sous-ensemble $A \subset E$, on considère la fonction $\mathbf{1}_A : E \longrightarrow \{0,1\}$ définie par :

$$\forall x \in E, \mathbf{1}_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$$

On dit que $\mathbf{1}_A$ est la fonction indicatrice de A (en tant que partie de E). Montrer que pour tout $A \subset E$, pour tout $B \subset E$:

- (a) $\mathbf{1}_{\bar{A}} = 1 \mathbf{1}_{A}$
- (b) $\mathbf{1}_{A\cap B} = \mathbf{1}_A \times \mathbf{1}_B$
- (c) $\mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B \mathbf{1}_A \times \mathbf{1}_B$

Exercice 8 Soit E un ensemble et $A, B \subset E$. On pose $A\Delta B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$ et on dit que Δ est l'opération de différence symétrique.

- (a) Représenter sur un diagramme cette notion de différence symétrique.
- (b) Déterminer $A\Delta A$ et $A\Delta \emptyset$ lorsque $A \subset E$.
- (c) Montrer que pour toutes parties $A, B \subset E$, on a $A\Delta B = (A \cup B) \cap \overline{A \cap B}$.
- (d) Comment interpréter en termes logiques l'opération Δ ?

Exercice 9

- (a) Déterminer $\bigcup_{n\in\mathbb{N}} \mathbb{R}_n[X]$ et $\bigcap_{n\in\mathbb{N}} \mathbb{R}_n[X]$.
- (b) Soit E un ensemble, et $(A_n)_{n\in\mathbb{N}}$ une suite de parties de E telles que :

$$\forall n \in \mathbb{N}, A_n \subset A_{n+1}.$$

On dit que cette suite de parties de E est croissante pour l'inclusion. Déterminer $\bigcap A_n$.

On commencera par représenter la situation sur un diagramme de Venn.

Exercice 10 On pose $E = \{0,1\}^{\mathbb{N}^*}$.

(a) Décrire les éléments de E. Justifier qu'on peut interpréter E comme l'ensemble des résultats d'une suite infinie de lancers d'une pièce à pile ou face.

Dans toute la suite de cet exercice, on adopte cette interprétation de l'ensemble E et va interpréter des parties de E selon cette expérience aléatoire.

Pour tout $i \in \mathbb{N}^*$, on pose $P_i = \{(u_n)_{n \in \mathbb{N}^*} \in E | u_i = 1\}$.

- (b) Donner un élément de P_1 , et un élément de P_2 . Interpréter, pour tout $i \in \mathbb{N}^*$, l'ensemble P_i selon l'interprétation précédente de E. En faire de même pour les ensembles \bar{P}_i .
- (c) Déterminer $\bigcap_{i\in\mathbb{N}^*} P_i$. Interpréter cet ensemble.
- (d) De même, déterminer et interpréter l'ensemble $\bigcap_{i\in\mathbb{N}^*} \bar{P}_i$. Que dire de $\bigcup_{i\in\mathbb{N}^*} P_i$?
- (e) Soit $k \in \mathbb{N}$. Interpréter l'ensemble $\bigcup_{i \geq k} P_i$.
- (f) En déduire l'interprétation de $\bigcap_{k\in\mathbb{N}^*} \left(\bigcup_{i\geq k} P_i\right)$

Ensembles et probabilités

Exercice 11

- (a) Déterminer $\bigcup_{n\in\mathbb{N}} \mathbb{R}_n[X]$ et $\bigcap_{n\in\mathbb{N}} \mathbb{R}_n[X]$.
- (b) Soit E un ensemble, et $(A_n)_{n\in\mathbb{N}}$ une suite de parties de E telles que :

$$\forall n \in \mathbb{N}, A_n \subset A_{n+1}.$$

On dit que cette suite de parties de E est croissante pour l'inclusion. Déterminer $\bigcap_{n\in\mathbb{N}}A_n$.

On commencera par représenter la situation sur un diagramme de Venn.

Exercice 12 On pose $E = \{0, 1\}^{\mathbb{N}^*}$.

(a) Décrire les éléments de E. Justifier qu'on peut interpréter E comme l'ensemble des résultats d'une suite infinie de lancers d'une pièce à pile ou face.

Dans toute la suite de cet exercice, on adopte cette interprétation de l'ensemble E et va interpréter des parties de E selon cette expérience aléatoire.

Pour tout $i \in \mathbb{N}^*$, on pose $P_i = \{(u_n)_{n \in \mathbb{N}^*} \in E | u_i = 1\}$.

- (b) Donner un élément de P_1 , et un élément de P_2 . Interpréter, pour tout $i \in \mathbb{N}^*$, l'ensemble P_i selon l'interprétation précédente de E. En faire de même pour les ensembles \bar{P}_i .
- (c) Déterminer $\bigcap_{i\in\mathbb{N}^*} P_i$. Interpréter cet ensemble.
- (d) De même, déterminer et interpréter l'ensemble $\bigcap_{i\in\mathbb{N}^*} \bar{P}_i$. Que dire de $\bigcup_{i\in\mathbb{N}^*} P_i$?
- (e) Soit $k \in \mathbb{N}$. Interpréter l'ensemble $\bigcup_{i \geq k} P_i$.
- (f) En déduire l'interprétation de $\bigcap_{k\in\mathbb{N}^*} \left(\bigcup_{i\geq k} P_i\right)$

Fonctions: ensembles images et bijections réciproques

Exercice 13 On considère la fonction

$$f: \quad \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^2 - x - 1 \end{array}.$$

Déterminer l'ensemble image $f(\mathbb{R})$.

Exercice 14 On considère la fonction $f: [-1,1] \longrightarrow \mathbb{R}$ $r \mapsto \sqrt{1-r^2}$

Déterminer l'ensemble image f([-1,1]).

Exercice 15 Montrer que les applications suivantes sont bijectives, et déterminer leurs bijections réciproques

(a)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto 2x - 1$

(e)
$$f: \mathbb{R} \setminus \{1\} \longrightarrow \mathbb{R} \setminus \{1\}$$

$$x \longmapsto \frac{x}{x-1}$$

$$(i) f: \underset{x \longmapsto \frac{x}{1+|x|}}{\mathbb{R}} \longrightarrow]-1,1[$$

$$(b) \ f: \ \ \stackrel{]-1,+\infty[}{x} \ \stackrel{\mathbb{R}}{\longmapsto} \ln(1+x) \quad (f) \ f: \ \ x \longmapsto \frac{1-x}{1+x} \\ (j) \ f: \ \]-\infty,1] \longrightarrow \mathbb{R}_+ \\ x \longmapsto \sqrt{1-x}$$

$$(f) f: \frac{\mathbb{R}\backslash\{-1\} \longrightarrow \mathbb{R}\backslash\{-1\}}{x \longmapsto \frac{1-x}{1+x}}$$

$$(j) f:]-\infty,1] \longrightarrow \mathbb{R}_+$$

 $x \longmapsto \sqrt{1-x}$

(c)
$$f: \mathbb{R} \longrightarrow \mathbb{R}_+^*$$

 $x \longmapsto \ln(1 + e^x)$

(c)
$$f: \mathbb{R} \longrightarrow \mathbb{R}_{+}^{*}$$
 $(g) f: [-1,1] \longrightarrow [-1,1]$ $x \longmapsto \ln(1+e^{x})$ $(g) f: \frac{2x}{1+x^{2}}$

(k)
$$f: \mathbb{R}_+ \longrightarrow [1, +\infty[$$

 $x \longmapsto \sqrt{1+x^2}$

(d)
$$f: \begin{bmatrix} 0, 1 \end{bmatrix} \longrightarrow \mathbb{R}_{-}$$

 $x \longmapsto \ln(1 - x^2)$

$$(h) f: \frac{\mathbb{R} \longrightarrow \mathbb{R}}{x \longmapsto x|x|}$$

$$(l) f: \mathbb{R} \longrightarrow \mathbb{R}_+^*$$
$$x \longmapsto x + \sqrt{1 + x^2}$$

Exercice 16 Soit f la fonction définie par la formule $f(x) = \frac{\sqrt{1-x^2}}{1+x}$.

- (a) Déterminer \mathcal{D}_f et $f(\mathcal{D}_f)$.
- (b) Montrer que f réalise une bijection de \mathcal{D}_f sur $f(\mathcal{D}_f)$ et déterminer sa bijection réciproque.

Exercice 17 Soit $f: \mathbb{R} \to \mathbb{R}$ donnée par $f(x) = \frac{e^x + e^{-x}}{2}$.

- (a) Vérifier que la formule $g(x) = \ln(x + \sqrt{x^2 1})$ définie bien une fonction $g: [1, +\infty[\to \mathbb{R}_+]]$
- (b) Montrer que f induit une bijection de \mathbb{R}_+ vers $[1, +\infty]$ de réciproque g.

Exercice 18 On considère les trois fonctions f, g et h définies respectivement sur \mathbb{R} par les trois formules

$$f(x) = \frac{e^x + e^{-x}}{2}, g(x) = \frac{e^x - e^{-x}}{2}$$
 et $h(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

- (a) Démontrer que f réalise une bijection de \mathbb{R}_+ sur $[1, +\infty]$ et déterminer sa bijection réciproque.
- (b) Démontrer que g réalise une bijection de \mathbb{R} sur \mathbb{R} et déterminer sa bijection réciproque.
- (c) Démontrer que h réalise une bijection de \mathbb{R} sur] 1,1[et déterminer sa bijection réciproque.

Applications

Exercice 19 L'application $\begin{vmatrix} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (2x+y,x-y) \end{vmatrix}$ est-elle bijective? Si oui, déterminer sa réciproque.

Exercice 20 Soit $f: \begin{vmatrix} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x, y, z) & \longmapsto & (x + y - z, 2x + y + 3z, 3x + y + 7z) \end{vmatrix}$.

- (a) Soit $(a,b,c) \in \mathbb{R}^3$. A quelle condition (a,b,c) admet-il un antécédent par f? En déduire l'ensemble image $f(\mathbb{R}^3)$ de f.
- (b) Soit $(a, b, c) \in f(\mathbb{R}^3)$. Déterminer les antécédents de (a, b, c) par f.
- (c) f est-elle injective?

Exercice 21 Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications.

- (a) Montrer que si $g \circ f$ est injective, alors f est injective.
- (b) Montrer que si $g \circ f$ est surjective, alors g est surjective.

Exercice 22 Soit $f: E \longrightarrow E$ une application.

Montrer que $f \circ f$ est bijective si, et seulement si, f est bijective.

Exercice 23 Soit $f: E \longrightarrow E$ une application telle que $f \circ f \circ f = f$.

Montrer que f est injective si, et seulement si, f est surjective.

Lorsque ces conditions équivalentes sont réalisées, déterminer f^{-1} .

Exercice 24 Soit $f: E \longrightarrow F$ une application et $A, B \subset E$.

- (a) Montrer que $f(A \cup B) = f(A) \cup f(B)$.
- (b) Montrer que $f(A \cap B) \subset f(A) \cap f(B)$.
- (c) A-t-on nécessairement $f(A \cap B) = f(A) \cap f(B)$?
- (d) Montrer que f est injective \iff $(\forall A \subset E, \forall B \subset E, f(A \cap B) = f(A) \cap f(B)).$

Exercice 25 Soit E un ensemble, $A \subset E$ et $f: \mathcal{P}(E) \longrightarrow \mathcal{P}(E)$ $X \longmapsto X \cap A$

- (a) Montrer que f est injective si, et seulement si, A = E.
- (b) Montrer que f est surjective si, et seulement si, A = E.

Exercice 26 Soit E un ensemble et $A, B \subset E$. On considère l'application $f: \mathcal{P}(E) \longrightarrow \mathcal{P}(A) \times \mathcal{P}(B)$ $X \longmapsto (X \cap A, X \cap B)$

- (a) Montrer que f est injective $\iff A \cup B = E$.
- (b) Montrer que f est surjective $\iff A \cap B = \emptyset$
- (c) Dans le cas où f est bijective, déterminer f^{-1} .

Pour continuer

Exercice 27 Soit E un ensemble et $A, B \subset E$. Montrer que $(A \cap \bar{B}) \cup (\bar{A} \cap B) = B \iff A = \emptyset$.

Exercice 28 Soit E un ensemble et $A, B, C \subset E$.

Montrer que $A \cup B = B \cap C \iff A \subset B \subset C$.

Exercice 29 Soient A, B et C trois sous-ensembles d'un ensemble E.

On suppose que $A \cup B = A \cap C$ et $A \cap B = A \cup C$. Montrer que A = B = C.

Exercice 30 Soient A, B et C trois sous-ensembles d'un ensemble E.

On suppose que $A \cap C = B \cap C$ et $A \cup C = B \cup C$. Montrer que A = B.

Exercice 31 Soit E un ensemble et $A, B \subset E$.

Déterminer tous les sous-ensembles $X \subset E$ tels que $A \cup X = B$ (resp. $A \cap X = B$).

Exercice 32 Soit E un ensemble et $A, B \subset E$. On rappelle que $A \setminus B = \{a \in A | a \notin B\}$.

- (a) Représenter sur un diagramme cette notion de différence. Montrer $A \setminus B = A \cap \bar{B}$.
- (b) Déterminer $A \setminus A$ et $A \setminus \emptyset$ lorsque $A \subset E$.
- (c) Montrer l'équivalence : $A \setminus B = A \iff B \setminus A = B$ (comment se nomme ce cas?).

Exercice 33 On considère la fonction $f: \begin{array}{ccc} \mathbb{R}\backslash\{-1\} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{2x-1}{x+1} \end{array}$.

Déterminer l'ensemble image $f(\mathbb{R}\setminus\{-1\})$.

$$\mathbb{R}\longrightarrow\mathbb{R}$$

Exercice 34 On considère la fonction $f: x \mapsto \frac{1-x^2}{1+x^2}$.

Déterminer l'ensemble image $f(\mathbb{R})$.

Exercice 35 On considère la fonction

$$f:$$
 $]-\infty,-1[\cup]1,+\infty[$ $\longrightarrow \mathbb{R}$ $x \longmapsto \ln\left(\frac{x-1}{x+1}\right)$

Déterminer l'ensemble image $f(]-\infty,-1[\cup]1,+\infty[)$.

Exercice 36 Soit f la fonction définie par la formule $f(x) = \sqrt{\frac{2x}{x+1}}$.

- (a) Déterminer \mathcal{D}_f et $f(\mathcal{D}_f)$.
- (b) Montrer que f réalise une bijection de \mathcal{D}_f sur $f(\mathcal{D}_f)$ et déterminer sa bijection réciproque.

Exercice 37 On considère la fonction définie par la formule $f(x) = x + \ln(2 + e^x)$.

Déterminer \mathcal{D}_f , puis $f(\mathcal{D}_f)$ et montrer que f réalise une bijection de \mathcal{D}_f sur $f(\mathcal{D}_f)$ et déterminer f^{-1} .

Exercice 38 Soit E un ensemble, $A \subset E$ et $f: \begin{array}{ccc} \mathcal{P}(E) & \longrightarrow & \mathcal{P}(E) \\ X & \longmapsto & X \cup A \end{array}$.

- (a) Montrer que f est injective si, et seulement si, $A = \emptyset$.
- (b) Montrer que f est surjective si, et seulement si, $A = \emptyset$.

Exercice 39 Soit E un ensemble et $f: \begin{array}{ccc} \mathcal{P}(E) & \longrightarrow & \mathcal{P}(E) \\ X & \longmapsto & \bar{X} \end{array}$.

- (a) Déterminer l'application $f \circ f$.
- (b) En déduire que f est bijective et déterminer f^{-1} .

Exercice 40 Soit E un ensemble, $A \subset E$ et $B \subset E$.

On rappelle que la différence symétrique de A et B le sous-ensemble de E défini par :

$$A\Delta B = (A \cap \bar{B}) \cup (\bar{A} \cap B)$$

- (a) Soient $A, B \subset E$. Déterminer $A\Delta(A\Delta B)$.
- (b) Montrer que l'application $f: \mathcal{P}(E) \longrightarrow \mathcal{P}(E)$ est bijective et déterminer f^{-1} .

Exercice 41 Pour tous ensembles E et F et toute application $f: E \longrightarrow F$, on pose $\widehat{f}: \begin{array}{ccc} \mathcal{P}(E) & \longrightarrow \mathcal{P}(F) \\ X & \longmapsto f(X) \end{array}$.

- (a) Soit $f: E \longrightarrow F$. Montrer que: \widehat{f} est injective $\iff f$ est injective.
- (b) Soit $f: E \longrightarrow F$. Montrer que : \widehat{f} est surjective $\iff f$ est surjective.
- (c) Soit $f: E \longrightarrow F$. Montrer que : f bijective $\Longrightarrow (\widehat{f})^{-1} = \widehat{f^{-1}}$.