Lycée Hoche 2025-2026
ECG1A Mathématiques

TP de Python numéro 4
Tracés avec matplotlib

Semaine du 20 novembre.

I. La bibliothéque graphique matplotlib

1. Premiére utilisation de plt.plot

Pour réaliser des figures avec Python, on utilisera la bibliothéque matplotlib de python, et plus particuliérement
son sous-module pyplot.

Pour I'utiliser, on 'importera avec la commande suivante :

import matplotlib.pyplot as plt

Une fois cette commande effectuée, le module matplotlib.pyplot est donc importé avec, comme raccourci
choisi plt.

Ce module permet de générer des graphiques, personnalisables, & ’aide d’une liste de points & placer.

Regardons un premier exemple :

import matplotlib.pyplot as plt
listeX=[1,3,2]

listeY=[0,-1,5]
plt.plot(listeX,listeY)
plt.show ()

1.00 125 150 175 2,00 225 2.50 2.75 3.00

Dans cet exemple :
e La commande plt.plot génére un graphique & partir de deux listes données (listeX et listeY ici).

e La premiére liste est interprétée comme une liste d’abscisse, la seconde comme une liste d’ordonnées, et
ces deux listes doivent avoir la méme longueur.

e Ce graphique place la liste des points ainsi décrits, et les relie par une ligne brisée selon l'ordre spécifié
dans la liste des abscisse. Ici, il s’agit donc des points de coordonnées (1,0), (3,—1) puis (2,5).

e La commande plt.show() demande & Python d’afficher le graphique généré.

Ceci résume a premiére vue le comportement des commandes plt.plot() et plt.show().

1
Exercice 1. Tracer avec Python une lignée brisée passant, dans cet ordre, pas les points de coordonnées (—1, 5),
(0,1), (1,2), (2,4), (3,8) et (4,16). Que remarquez-vous ?

Remarque. La commande plt.show() ne prendra pas d’arguments, mais il ne faut pas oublier de mettre
les parenthéses.

memmmm--

Remarque. A partir de maintenant et pour tout le TP, on supposera les imports suivants
effectués :

Frmmm—-

import numpy as np
import matplotlib.pyplot as plt

Remarque. A la place de donner une liste d’abscisse en tant que list, on peut utiliser la fonction range
pour décrire des abscisses.

Exemple 2. La code python suivant affiche un graphique des 48 premiers termes de la suite u définie par
2 n
up =n*+ (—=1)"n.

listeX=range (48)

listeY=[n**2+n*x(-1)**xn for n in listeX]
plt.plot(listeX,listeY)

plt.show ()

Exercice 3. Tracer, avec Python, une ligne brisée passant par les points d’abscisses -5,-3,0,2,3,5,7,10 et 20 du
graphe de la fonction ¢ — ¢2.

2. Personnalisation des tracés

Remarque. Ces commandes ne sont pas exigibles pour le concours, mais sont assez indispensables dans cer-
tains exercices de ce TP, et dans les contexte o vous devez tracer plusieurs courbes sur un méme graphique.

memmmm--

a) Marqueurs de points, lignes et couleur

On dispose d’un bon nombre d’options de personnalisation des tracés effectués avec plt.plot. On utilisera
pour cela les code présentés en partie 1 de I’annexe de ce TP.

Personnalisation des points, des lignes et de la couleur

Si, conformément a ’annexe :

e p désigne un code pour les marqueurs de points,

e m désigne un code pour les lignes,

e c désigne un code pour la couleur,

e listeX et listeY désignent respectivement, comme précédemment, des listes d’abscisses et

d’ordonnées,
alors la personnalisation voulue du graphique se précise en argument supplémentaire de plt.plot de la
maniére suivante :
plt.plot (listeX,listeY,"plc")

On peut également ne préciser que certaines options de personnalisation. Par exemple :
e plt.plot(listeX,listeY,"X:r") engendre un graphique dont les points sont marqués par des
grosses croix, reliés par des pointillés, en rouge.
e plt.plot(listeX,listeY,"o——") engendre un graphique avec des gros points reliés par des
tirets,
e plt.plot(listeX,listeY,"Dg") engendre un graphique dont les points sont marqués par des
diamants verts.

Exercice 4. Tracer les 10 premiers termes de la suite u définie par u, = (—1)"y/n en marquant les points par
des grosses croix rouges.

N

w

o

b) Titre, légendes et quadrillage

On peut spécifier ces éléments selon la syntaxe suivante. Dans ce code, on suppose que listeX et 1isteY sont,
a nouveau, des listes d’abscisses et d’ordonnées définies précédemment.

Ajout d’une légende désignant la courbe
plt.plot (listeX,listeY,label="Légende de la courbe')

Légendes supplémentaires : entre plt.plot() et plt.show()
L’ordre entre les commandes ci-dessous est au choix

On peut ne demander qu’une partie de ces personnalisations
plt.title("Titre du graphique")

plt.grid() # Ajoute un quadrillage

plt.xlabel ("Légende en abscisse'")

plt.ylabel ("Légende en ordonne")

plt.legend() # Demande 1’affichage des légendes (obligatoire)

Demande d’affichage
plt.show ()

¢) Personnalisation des axes

Pour préciser & Python les valeurs d’abscisse et d’ordonnée entre lesquelles afficher les axes, on utilise les
commandes plt.xlim et plt.ylim entre plt.plot et plt.show.

On suppose toujours que listex et listeY sont des listes d’abscisses et d’ordonnée valide.

plt.plot (listex,listeY)

Personnalisation des axes

1’ordre est au choix

plt.xlim(xmin,xmax) # xmin, xmax sont des nombres & spécifier
plt.ylim(ymin,ymax) # idem

Demande d’affichage
plt.show ()

Par exemple, pour afficher un graphique ou ’axe des abscisse va de 0 & 10, et ’axe des ordonnées de 0 & 20, on
écrit :

plt.plot(listex,listeY)

plt.x1im(0,10)
plt.ylim(0,20)

plt.show ()

Alternativement, on peut utiliser la commande plt.axis(’equal’) pour rendre le repére orthonormé.

3. Tracés multiples sur un méme graphique

Pour effectuer plusieurs tracés sur un méme graphique, on dispose de deux possibilités.

Premiére possibilité

On peut simplement appeler plusieurs fois la commande plt.plot avant la demande d’affichage
plt.show(), comme dans ’exemple ci-dessous.

Exemple 5. Ce code trace sur un méme graphique les 50 premiers termes de la suite v donnée par u,, = n+1
et les 20 premiers termes de la suite v donnée par v, = (—1)".

import matplotlib.pyplot as plt
Définition des listes

listeX1l=range (50)

listeY1=[n+1 for n in listeX1]

listeX2=range (20)

listeY2=[(-1)*#*n for n in listeX2]

Traceés
plt.plot (listeX1l,listeY1)
plt.plot(listeX2,listeY2)

Affichage
plt.show ()

Et le résultat :

Remarque. Cette premiére syntaxe se généralise & un nombre quelconque de tracés.

e

Seconde possibilité

Pour tracer sur un méme graphique les points donnés par des listes 1listeX1, listeYl d’un coté, et
listeX2, listeY2 de 'autre, on peut utiliser la syntaxe suivante :
plt.plot(listeX1l,listeYl,...,listeX2,liste¥2,...)

ot les points de suspensions représentent les options de styles (légende et codes pour les marqueurs et
la couleur) spécifiées pour chaque graphique.

Exemple 6. Ce code trace sur un méme graphique les 40 premiers termes des suites u et v données par
U, = n? +1 et v, = n", les termes de u étant données par des petites croix et les termes de v par des
diamants.

Définition des listes
listeX=range (40)

listeY1=[n**2+1 for n in listeX]
listeY2=[n**n for n in listeX]

Trace
plt.plot(listeX,listeYl,"x",listeX,listeY2,"D")

Affichage
plt.show ()

Remarque. Cette seconde syntaxe est moins pratique et je vous conseille la premiére, mais vous devez étre
capable de la lire.

Frmmm—-

4. Bilan des deux derniers parties

Voici un code Python permettant de tracer, sur un méme graphique, les 20 premiers termes des suites u, v et
w définies sur N par :

Up =N+ /1
Up =n—+/n
wy, =n+ (=1)"/n

avec des options de personnalisation permettant de rendre le graphique lisible.

Remarque. Toutes les options de personnalisation sont & mettre entre le dernier appel de plt.plot et
plt.show().

Imports
import numpy as np
import matplotlib.pyplot as plt

Listes des abscisses et ordonnées
listeX = range(20) # entiers de 0 a 19

listeU=[n + np.sqrt(n) for n in listeX] # ordonnées pour u
listeV=[n - np.sqrt(n) for n in listeX] # ordonnées pour v
listeW = [n + np.sqrt(n)*(-1)**n for n in listeX] # ordonnées pour w

Tracés avec légende

plt.plot (listeX,listeU,"or",label="Suite u") # u avec gros points rouges

plt.plot (listeX,listeV,"X-g",label="Suite v") # v avec grosses croix vertes reliées
par un trait

plt.plot(listeX,listeW,".:",label="Suite w") # w avec des petits points reliés par
pointillés

Axes et légendes

plt.title("Trois suites")

plt.xlabel ("Abscisse")

plt.ylabel ("Ordonnée")

plt.grid() # ajout d’un quadrillage
plt.axis(’equal’) # axes orthonormés

affichages
plt.legend ()
plt.show ()

Et le résultat :

Trois suites

® Suiteu
—#— Suite v
204 v Suitew

15 4

Ordonnée

-5 0 5 10 15 20 25
Abscisse

II. Représentation graphique des suites réelles

Pour représenter une suite réelle (u,)nen (disons ici, ses 101 premiers termes), on peut simplement :
e Construire une liste 1isteX formée des entiers de 0 & 100 dans 'ordre croissant,
e construire la liste listeY qui est [ug,u1, ..., U100], puis
e utiliser plt.plot(listeX,listeY).

Ou trace ainsi une ligne brisée passant par les points de coordonnées (0,ug), (1,u1), (2,u2), ..., (100,u190) ce
qui correspond bien & nos attentes.

1. Suites définies explicitement

Une suite définie explicitement est une suite u dont le terme u,, est donné par une formule explicite en fonction
de n.

On peut alors assez simplement tracer les premiers termes de cette suite.

3n

Par exemple, ce code trace les 75 premiers termes de la suite (uy,)nen définie par u, = SR :
n

import matplotlib.pyplot as plt
listeX=range (75)

listeY=[3*%n/(n**2+1) for n in listeX]
plt.plot(listeX,listeY)

plt.show ()

Il faut étre attentif aux premiers termes...
Exercice 7. Compléter le code ci-dessous pour qu’il affiche les 75 premiers termes de la suite u définie sur N*

3
par u, = —.
n

import matplotlib.pyplot as plt

listeX=range(...,...)

listeY=[. for n in oo]
plt.plot (listeX,listeY)

plt.show ()

On peut également (et c’est conseillé) construire en amont une fonction donnant le terme w,, en fonction de n.
In(n)
NOES

Par exemple, ce code trace les 50 premiers termes de la suite u définie sur N par u,, = exp(n+ 1) —

import numpy as np
import matplotlib.pyplot as plt

def U(n): # entrée : entier n, sortie : n iéme terme de u
return(np.exp(n+1) -np.log(n)/np.sqrt(n+1))

listeX=range (50)
listeY=[U(n) for n in listeX]

plt.plot(listeX,listeY)
plt.show ()

14 (-1)"
Exercice 8. Soit (u,)nen la suite réelle définie par : Vn € N, u,, = % Représenter graphiquement les

valeurs de wu,, pour n € [0,40]. Que remarquez-vous? En déduire une autre expression de w,, en fonction de n.
Exercice 9. Soient u et v les suites réelles définies sur N par :

Vn € N, vn=2_gj

Représenter sur un méme graphique les valeurs (uy,)nefo,20] €t (Vn)nefo,207- Quelle propriété mathématique est
illustrée par cette figure ?

2. Suites définies par une relation de récurrence

Pour tracer les termes d’une suite (u,)nen définie par récurrence, on pourrait aussi écrire une fonction d’entéte
def U(n): prenant en entrée un entier n et renvoyant en sortie u,. On pourrait alors utiliser cette fonction
pour former, par exemple, la liste [ug, u1, ..., uso] si on désire tracer les valeurs de w,, pour n € [0, 50].

Cette méthode est trop inefficace pour étre conservée.

On préférera définir une fonction termesU renvoyant directement la liste des termes dont on a besoin pour
construire le graphique, selon les méthodes du TP précédent.

Exemple 10. Considérons la suite u définie par la relation de récurrence :

Ug = 1

Vn € Nyupy1 = ue™r

Alors, la fonction TermesU définie par le code suivant prends en entrée un entier naturel n et renvoie en sortie
la liste [ug, w1, ..., Up).

import numpy as np # Pour 1l’exponentielle

def TermesU(n):

L = [1] # L contiendra la liste voulue, initialisée avec u(0)
for k in range(mn): # faire n fois
L.append(L[-1]*np.exp(-L[-1])) # ajout du terme suivant

return (L)

A la suite de ce code, on peut alors tracer les termes (Un)nefo,50] avec le code suivant :

import matplotlib.pyplot as plt #import

listeX=range (51) # Entiers de 0 a 50

listeY=TermesU(50) # Termes u(n) pour n entre 0 et 50

plt.plot (listeX,listeY,"x") # Marquage des points avec des croix, optionnel
plt.show () # Demande d’affichage

%
%
X000,
50000
OO 0000OCON

o 10 20 30 40 50

ug = 0
Exercice 11. Considérons la suite u donnée par 1 . Représenter graphiquement les
Vn € N, Un+1 = T
Un

termes u, pour n € [0,20]. Que conjecturer ?

Il faut éventuellement faire attention aux premiers termes, et si l’entier n est présent dans la relation de
récurrence.
Uy = 1
Exercice 12. Représenter les 30 premiers termes de la suite (uy,),en+ définie par . U,
Vn € N* upt1 = —=

vn

On peut également tracer ainsi des suites définies par une relation de récurrence sur deux rangs.

. . . ug=1l,up =2
Exercice 13. Représenter les termes (un)nefo,20) de la suite u définie par 0 !
’ Yn € N,uppo = —Upy1 — Un

III. Représentation graphique des fonctions

Voici une premiére tentative de représentation de la fonction = — e” sur lintervalle [—2, 2].

import matplotlib.pyplot as plt
import numpy as np 7
listeX=[-2, -1, 0, 1, 2]
listeY=[np.exp(x) for x in listeX]
plt.plot(listeX,listeY)
plt.show () “

-20 -15 -10 -05 0.0 0.5 1.0 15 2.0

Ceci approche bien le graphe de ’exponentielle, les 5 points placés sont bien des points de son graphe, mais
I’approximation en ligne brisée est visuellement bien trop grossiére.

Pour adapter cette méthode et avoir un graphe convenable, il suffit de placer (beaucoup) plus de points, jusqu’a
ce que la ligne brisée ne soit plus vraiment visible. On dispose pour cela de fonctions du module numpy, qui se
chargent de générer une grande liste d’abscisses pour effectuer facilement nos tracés.

1. Les fonction linspace et arange de numpy

On suppose dans cette partie que numpy est importé avec : | import numpy as np.

La fonction np.linspace

Soient a et b deux réels tels que a < b, et N un entier naturel supérieur & 2. Alors, la commande

np.linspace(a, b, N)

b—a
génére la liste des N+1 réels de a a b, réguliérement répartis "tous les "

Exemple 14. np.linspace(0, 1, 4) génére la liste [0., 0.25, 0.5, 0.75, 1.]. On a bien 5 réels de
[0, 1], & partir de 0, réguliérement répartis.

Remarque. Ces réels sont les termes ug, ..., uy de 'unique suite arithmétique u telle que ug = a et Uy = b.

b—a
La raison de cette suite est ——.

On utilise trés souvent cette commande pour avoir une liste d’abscisse convenable pour le tracé de graphe de

fonctions. Par exemple, avec 100 points de -2 & 2 pour le graphe de I’exponentielle, on ne voit déja plus que
notre tracé n’est qu’une ligne brisée.

import matplotlib.pyplot as plt
import numpy as np 74
listeX=np.linspace (-2, 2, 100)
listeY=[np.exp(x) for x in listeX]
plt.plot(listeX,listeY)

plt.show ()]

-2.0 -15 -10 -05 0.0 0.5 10 15 2.0

10

11

14

La fonction np.arange

Soient a et b deux réels tels que a < b, et p un réel. Alors, la commande

np.arange(a,b,p)
génére la liste [a, a+p, a+2*p, a+3#*p,...] des points obtenus & partir de a en ajoutant progressive-
ment p tout en restant strictement inférieur & b.

Exemple 15. np.arange(0, 2, 0.1) génére la liste [0, 0.1, 0.2, 0.3,..., 1.8, 1.9].

On peut donc également utiliser np.arange pour avoir une liste donnant beaucoup d’abscisses pour les tracés
de graphes de fonctions : au lieu de spécifier le nombre de points qu’on veut (comme avec np.linspace), on
spécifie ’espacement entre ceux-ci.

Par exemple, pour tracer le graphe du logarithme sur]0, 3], on peut écrire le code suivant (on commence &
0.001, et on place un point tous les 0.01) :

import matplotlib.pyplot as plt
import numpy as np

listeX=np.arange (0.001, 3, 0.01) N
listeY=[np.log(x) for x in listeX]

plt.plot(listeX,listeY) 1
plt.show () Sl

2. Représenter une fonction

Une fois le point précédent clair, la représentation de fonctions f devient assez simple.
e On définit une fonction Python f prenant en entrée un réel x et renvoyant f(z),
e on génére une liste listeX des abscisses avec np.linspace ou np.arange,

e on génére la liste 1isteY des ordonnées avec la commande :
listeY = [f(x) for x in listeX]

e et on utilise les commandes plt.plot(listeX,listeY) et plt.show().

2
Exemple 16. Le code suivant affiche une représentation graphique la fonction x . i sur [—2,4].
import numpy as np
import matplotlib.pyplot as plt
4l
Définition de la fonction f
def f(x):
return((x**2+1)/(np.exp(x)+1)) 37
Génération des listes
listeX=np.linspace(-2,4,500) # 500 points]
listeY=[f(x) for x in listeX]
14
Tracé et affichage
plt.plot(listeX,listeY)
plt.show () -2 1 0 1 2 3 a

10

Remarque. On peut avoir & faire quelques ajustements pour tracer des fonctions sur des domaines qui ne
sont pas des segments.
e Pour une représentation sur un intervalle avec une (ou des) borne ouverte comme |0, 1], on commence
le tracé & un point suffisamment proche de la (ou des) borne concernée, comme [0.01, 1].
e Pour une représentation sur un intervalle non borné (comme R), on choisit un segment suffisamment
grand sur lequel effectuer le tracé (comme [0, 100] ou [0, 1000]).
e Pour une représentation sur un domaine qui n’est qu’une réunion d’intervalles (comme [—2, —1]U[1, 2]),
on effectue un tracé par intervalle intervenant dans cette réunion, et on met ces tracés sur un méme
graphique.

L

Exercice 17. Représenter sur un méme graphique les courbes des fonctions xz +— 1+ z, x — €” et x — 1+ ze”,
sur Uintervalle [—2,2] et avec un quadrillage. On ajoutera une légende pour identifier ces courbes. Quelle
propriété mathématique est représentée par cette figure 7

1siz>0
Exercice 18. Représenter avec Python la fonction signe: z +— ¢ 0six =0 sur intervalle [—3, 3].

—1lsiz <O
Exercice 19. Considérons les fonctions définies sur R par f: x +— 2 — 3z — 1 et g : o — |f()|. Représenter
sur une méme figure les courbes de f et g sur l'intervalle [—3, 3], avec une légende, un quadrillage, des pointillés
pour la courbe de f et un trait plein pour la courbe de g.
Exercice 20. Soit f la fonction définie sur R par f(x) = 22° — 522 + 2 — 5.

f est dérivable en tant que polynome, le but de cet exercice est de représenter sur un méme graphique les
courbes de f et de f’ et ce, sans calculer f’ & la main.

On rappelle que par définition, pour tout réel z :

) — tim TE D) = I

h—0 h

h) —
Cette limite justifie approzimation f'(x) ~ M, pour une valeur trés petite de h.

h

A P’aide de cette approximation pour h = 1076, tracer les courbes de f et f’ sur un méme graphique, sur
lintervalle [—2,4], avec des légendes pour distinguer les courbes.

Lintérét de cette méthode est qu’on peut représenter une dérivée sans savoir la calculer explicitement.

11

IV. Un exercice de synthése sur le probléme de Syracuse

Soit. A un entier naturel. On rappelle que la suite de Syracuse de paramétre A est la suite u définie par la

relation de récurrence :

Uug = A
Unp . .
— S1 n est pair

Vn € N, Up+1 = 2
3u, + 1 sinon

On remarque que si, pour un certain ng, on a u,, = 1, alors les termes suivants de la suite w,,41, Ung+2, -.. SO0t
indéfiniment 4,2,1,4,2,1....

La conjecture de Syracuse (1937), non résolue a ce jour (2024), prédit que quelque soit la valeur de A, la suite
de Syracuse de paramétre A termine par ce cycle 4,2,1,
Exercice 21. Toutes ces questions sont bien sir & faire en Python.

1. Ecrire une fonction d’entéte def Syracuse(A,n) prenant en entrée deux entiers naturels A et n et renvoyant
en sortie la liste [ug, u1, .., u,] des n+ 1 premiers termes de la suite de Syracuse de paramétre A.

2. Représenter graphiquement les n premiers termes de la suite de Syracuse de paramétre A dans les cas

suivants :

e A=15et n =25, e A=9etn=25, e A=2T7etn=100.

On pourra chercher & automatiser ce processus.
Soit A un entier naturel et (uy,)y est la suite de Syracuse de paramétre A.
e On appelle durée de vol du paramétre A lentier d4 = min{n € N, u,, = 1}.
e On appelle altitude mazximal de vol du paramétre A la valeur My = max(ug, U1, ..., Ud,,)-
3. Déterminer la durée de vol et I'altitude maximal de vol des paramétres A = 3 et A = 15.

4. Ecrire une fonction d’entéte def Vol(A): prenant en entrée un entier naturel A et renvoyant en sortie le
couple (dy, M,) formé par la durée de vol et I’altitude de vol du paramétre A. Tester cette fonction pour
A€ {3,15,27}.

5. Déterminer un paramétre Ay ayant une durée de vol maximale parmi les paramétres A tels que A < 1000,
ainsi que son altitude de vol correspondante.

6. Représenter les termes ug, u1, ..., Ug 40 de la suite de Syracuse de paramétre Ag.

7. Déterminer un parameétre A; ayant une altitude de vol maximale parmi les paramétres A tels que A < 1000,
ainsi que sa durée de vol correspondante.

8. Représenter les termes uo, u1, ..., uq,, de la suite de Syracuse de paramétre A;.

9. Déterminer le nombre de suites de Syracuse dont la durée de vol est inférieur & 20, et lister les paramétres
correspondants.

10. Déterminer le nombre de suites de Syracuse dont D’altitude maximale est inférieur & 100, et lister les
paramétres correspondants.

12

V. Annexe

1. Personnalisation des lignes et des points
Options de personnalisation des marqueur de points :
Code . 0 vou ou > ou < s * +
Points | petit point | gros point triangle carré | étoile | plus
Code P X X p h D
Points | gros plus | croix | grosse croix | pentagone | hexagone | diamants
Options de personnalisation des lignes :
Code — —— - :
Ligne | trait plein | tirets | alternance tiret-point | pointillés
Options de personnalisation de la couleur :
Code w k r g b ¢ m y
Couleur | blanc | noir | rouge | vert | bleu | cyan | magenta | jaune

13

	La bibliothèque graphique matplotlib
	Première utilisation de plt.plot
	Personnalisation des tracés
	Marqueurs de points, lignes et couleur
	Titre, légendes et quadrillage
	Personnalisation des axes

	Tracés multiples sur un même graphique
	Bilan des deux derniers parties

	Représentation graphique des suites réelles
	Suites définies explicitement
	Suites définies par une relation de récurrence

	Représentation graphique des fonctions
	Les fonction linspace et arange de numpy
	Représenter une fonction

	Un exercice de synthèse sur le problème de Syracuse
	Annexe
	Personnalisation des lignes et des points

