TD de mathématiques n°8: Asymptotique des suites

Pour commencer

Calculs de limites de formules explicites

Exercice 1 Dans chacun des cas suivants, indiquer s'il y a ou non une forme indéterminée puis déterminer la limite lorsque n tend vers $+\infty$ (toute utilisation d'un théorème de croissance comparée devra être explicitement mentionnée):

1)
$$n^2 - n - 1$$

16)
$$n - \frac{n}{n+1}$$

29)
$$\ln(n^2+1)-2\ln n$$

42)
$$e^n - n^e$$

2)
$$\sqrt{n+1} + \sqrt{n-1}$$

$$17) \ n\left(\sqrt{1+\frac{1}{n}}-1\right)$$

30)
$$n\sqrt{n} - n - 2\sqrt{n} + 1$$
. 43) $e^{n - \ln n}$

43)
$$e^{n-\ln n}$$

3)
$$n^3 + 2n^2 + 3n + 4$$

18)
$$e^{1+\ln n}$$

$$31) \frac{n^2 - n\sqrt{n}}{n\sqrt{n} - n}$$

$$44) \ \frac{5^n - 3^n}{2^n - 1}$$

$$4) \ \sqrt{n+1} - \sqrt{n-1}$$

32)
$$\ln\left(1-\frac{1}{1+\frac{1}{n}}\right)$$

$$45) \ln\left(\frac{1}{n}\right) + n$$

5)
$$n^3 - 2n^2 + 3n + 4$$

19)
$$n - \frac{n^2}{n+1}$$

$$\frac{1+\frac{1}{n}}{1+\frac{1}{n}}$$

$$46) \ \frac{2^n - 3^n}{2^{-n} + 3^{-n}}$$

6)
$$n + \sqrt{n^2 + n}$$

20)
$$e^{1-\ln n}$$

33)
$$3 + 2 \times 3^n$$

47)
$$n - \ln(n^2 - 1)$$

7)
$$n^4 + n^2 - (n^3 + n)$$
 21) $\frac{n^2 - n - 1}{n^2 + n + 1}$

$$21) \ \frac{n^2 - n - 1}{n^2 + n + 1}$$

$$34) \ \ 3 \times 2^n - 2 \times 3^n$$

48)
$$e^{\sqrt{n}} - \sqrt{n}$$

8)
$$n - \sqrt{n^2 - n}$$

22)
$$\ln\left(1+\frac{1}{n}\right)$$

35)
$$\sqrt{\left(4+\frac{1}{n}\right)\left(9-\frac{1}{n}\right)}$$

49)
$$\frac{2 \times 3^n + 2^n}{5 \times 3^n - 2^n}$$

9)
$$(1-n)(n-1)$$

23)
$$-n^3+n+1$$

36)
$$2^n - 3^n + 4^n$$

37) $\sqrt{1 + \frac{3n+1}{n+1}}$

50)
$$2^n - n^2$$

8)
$$n - \sqrt{n^2 - n}$$
 22) $\ln \left(1 + \frac{1}{n}\right)$
9) $(1 - n)(n - 1)$ 23) $\frac{-n^3 + n + 1}{n^2 + 1}$
10) $\sqrt{n^2 + n} - \sqrt{n^2 - n}$ 24) $\ln \left(\frac{1}{n}\right) - n$

24)
$$\ln\left(\frac{1}{n}\right) - n$$

37)
$$\sqrt{1+\frac{3n+1}{n}}$$

51)
$$\frac{e^{2n}-e^n}{e^{2n}+e^n}$$

10)
$$\sqrt{n^2 + n} - \sqrt{n^2 - n}$$
 24) $\ln\left(\frac{1}{n}\right) - n$
11) $n(n-1)(n+1) - n^3$ 25) $\frac{3n^3 + 2n^2 - 1}{4n^3 - n + 3}$

$$38) 3^{n} + (-2)^{n} - 5^{n}
39) \sqrt{n - \frac{n^{2}}{n+1}}$$

$$52) e^{n} - \frac{1}{n^{e}}
53) \frac{e^{-n}}{n^{e}}
54) \frac{e^{n}}{n^{2}+1}$$

$$52) e^n - \ln r$$

12)
$$\frac{n+1}{n}$$

13)
$$\frac{n}{n}$$

13) $\sqrt{n+\sqrt{n}} - \sqrt{n-\sqrt{n}}$ 26) $\frac{n^2+2n+1}{3n^3-5n+6}$

39)
$$\sqrt{n-\frac{n^2}{n^2}}$$

53)
$$\frac{e^{-n}}{n^e}$$

13)
$$\sqrt{n} + \sqrt{14}$$

27)
$$\ln (n^2 \pm 1) = \ln n$$

27)
$$\ln(n^2+1) - \ln n$$
 40) $5(\frac{1}{2})^n - \frac{1}{5} \times 2^n$

54)
$$\frac{e^n}{n^2+1}$$

55) $\ln(n+1) - n$

15)
$$1 - \frac{n}{n+1}$$

28)
$$\frac{(n-1)(n+1)}{(n-2)(n+2)}$$

41)
$$5 \times \left(\frac{1}{6}\right)^n + 2\left(-\frac{1}{3}\right)^n$$

56)
$$e^{-n}(\sqrt{n+1}+\sqrt{n})$$

Limites et inégalités

Exercice 2 Soit $a \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$ tel que n > -a, on pose $u_n = \left(1 + \frac{a}{n}\right)^n$. Déterminer $\lim_{n \to +\infty} u_n$. On pourra utiliser un encadrement du logarithme, ou démontrer que $\lim_{n\to+\infty} n(\ln(1+\frac{a}{n})) = a$ en reconnaissant un taux de variation.

Exercice 3 Soit $a \in \mathbb{R}_+$. Déterminer $\lim_{n \to +\infty} \left(a + \frac{1}{n}\right)^n$.

Exercice 4 Soit $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \frac{1}{n} \sum_{k=1}^{n} \lfloor kx \rfloor$ et $v_n = \frac{u_n}{n}$.

Déterminer $\lim_{n \to +\infty} u_n$ et $\lim_{n \to +\infty} v_n$.

Exercice 5 Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$, $v_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}$ et $w_n = \sum_{k=1}^n \frac{1}{\sqrt{n + k}}$.

- (a) Montrer que pour tout $n \in \mathbb{N}^*$, on a $\frac{n^2}{n^2+n} \le u_n \le \frac{n^2}{n^2+1}$, $\frac{n}{\sqrt{n^2+n}} \le v_n \le \frac{n}{\sqrt{n^2+1}}$ et $\sqrt{\frac{n}{2}} \le w_n$.
- (b) En déduire $\lim_{n\to+\infty} u_n$, $\lim_{n\to+\infty} v_n$ et $\lim_{n\to+\infty} w_n$.

Exercice 6 Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \sum_{n=1}^{\infty} \frac{1}{n+k}$.

- (a) Montrer que pour tout $x \in [0, 1], \ln(1+x) \le x \le -\ln(1-x)$.
- (b) En déduire $\lim_{n\to+\infty} u_n$.

Exercice 7 Soit $a \in \mathbb{R}_+^*$. Pour tout $n \in \mathbb{N}$, on pose $u_n = \frac{n!}{a^n}$.

- (a) On suppose que $a \leq 1$. Déterminer $\lim_{n \to +\infty} u_n$.
- (b) On suppose que a > 1.
 - (i) Déterminer $\lim_{n\to+\infty} \frac{u_{n+1}}{u_n}$
 - (ii) Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, \frac{u_{n+1}}{u_n} \geq 2$.
 - (iii) En déduire que pour tout $n \ge n_0, u_n \ge 2^{n-n_0} u_{n_0}$, puis la valeur de $\lim_{n \to +\infty} u_n$.

Limites et monotonie

Exercice 8 Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles positives telles que pour tout $n\in\mathbb{N}$:

$$\begin{cases} u_{n+1} = \sqrt{u_n v_n} \\ v_{n+1} = \frac{u_n + v_n}{2} \end{cases}$$

Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent et que $\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}v_n$.

Indication : on pourra étudier la monotonie des suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$.

Exercice 9 Soit a > 0. Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \prod_{k=1}^n (1 + a^k)$.

- (a) Étudier les variations de $(u_n)_{n\in\mathbb{N}^*}$ et en déduire que pour tout $n\in\mathbb{N}^*, u_n>0$.
- (b) On suppose que a=1. Déterminer $\lim_{n\to +\infty} u_n$.
- (c) On suppose que a > 1. Montrer que la suite $(u_n)_{n \in \mathbb{N}^*}$ diverge.
- (d) On suppose que a < 1. Pour tout $n \in \mathbb{N}^*$, on pose $v_n = \ln(u_n)$. Montrer que la suite $(v_n)_{n \in \mathbb{N}^*}$ est majorée, puis en déduire que la suite $(u_n)_{n \in \mathbb{N}^*}$ converge.

Études de suites récurrentes

Exercice 10 On considère la suite réelle définie par $u_0 = \frac{1}{2}$ et vérifiant pour tout $n \in \mathbb{N}$ la relation de récurrence

$$u_{n+1} = u_n \left(1 - u_n \right)$$

- (a) Montrer que pour tout $n \in \mathbb{N}, 0 \le u_n \le 1$.
- (b) Déterminer le sens de variations de la suite $(u_n)_{n\in\mathbb{N}}$.
- (c) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et déterminer $\lim_{n\to+\infty}u_n$.

Exercice 11 On considère la suite réelle définie par $u_0 = 1$ et vérifiant pour tout $n \in \mathbb{N}$ la relation de récurrence

$$u_{n+1} = u_n \left(1 + u_n \right)$$

- (a) Déterminer le sens de variations de la suite $(u_n)_{n\in\mathbb{N}}$.
- (b) Déterminer $\lim_{n\to+\infty} u_n$.

Exercice 12 On considère la suite réelle définie par $u_0=1$ et vérifiant pour tout $n\in\mathbb{N}$ la relation de récurrence

$$u_{n+1} = \ln\left(1 + u_n^2\right)$$

- (a) Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $0 \le u_n \le 1$.
- (b) Déterminer le sens de variations de la suite $(u_n)_{n\in\mathbb{N}}$.
- (c) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et déterminer $\lim_{n\to+\infty}u_n$.

Exercice 13 On considère la suite réelle définie par $u_0=2$ et vérifiant pour tout $n\in\mathbb{N}$ la relation de récurrence

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{2}{u_n} \right)$$

- (a) Montrer que pour tout $n \in \mathbb{N}, u_n$ existe et $u_n \geq \sqrt{2}$.
- (b) Déterminer le sens de variations de la suite $(u_n)_{n\in\mathbb{N}}$.
- (c) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et déterminer $\lim_{n\to+\infty}u_n$.
- (d) Écrire un code Python permettant d'obtenir une valeur approchée de $\sqrt{2}$ (sans utiliser sqrt bien sûr).

Études de suites définies de manière implicite

Exercice 14

- (a) Montrer que pour tout entier naturel $n \ge 1$, l'équation $\sqrt{x^3 + x + 1} = n$ admet une unique solution sur \mathbb{R}_+ , que l'on notera u_n dans la suite de l'exercice.
- (b) Montrer que $u = (u_n)_{n \in \mathbb{N}^*}$ est croissante.
- (c) Montrer que $\forall n \in \mathbb{N}^*, u_n \leq n$.
- (d) Montrer que u n'est pas majorée. En déduire la nature de u.

Exercice 15 Pour tout entier n, on note f_n la fonction polynomiale $x \mapsto x^n + x - 1$.

- (a) Soit $n \in \mathbb{N}^*$. Montrer que l'équation $f_n(x) = 0$ admet une unique solution sur \mathbb{R}_+ , et que celle-ci appartient à]0,1[. On notera x_n cette solution dans la suite.
- (b) Comparer, pour tout $n \in \mathbb{N}^*$, $f_{n+1}(x_n)$ et $f_{n+1}(x_{n+1})$.
- (c) En déduire que $(x_n)_{n\in\mathbb{N}^*}$ est strictement croissante.
- (d) Montrer que $(x_n)_n$ converge, et que sa limite l vérifie $0 < l \le 1$.
- (e) Montrer que : $\forall n > 0, x_n \leq l$.
- (f) Montrer enfin que l=1, à l'aide d'un raisonnement par l'absurde.

Termes de rangs pairs et impairs

Exercice 16 Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1}$.

- (a) Montrer que les suites $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.
- (b) Montrer que la suite $(S_n)_{n\in\mathbb{N}}$ converge.

Pour continuer

Exercice 17 Soit $x \in \mathbb{R}$. Déterminer $\lim_{n \to +\infty} \frac{\lfloor nx \rfloor}{n}$.

Exercice 18 Soient $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ les suites définies par $u_n = \sum_{k=1}^n \frac{1}{k} - \ln n$ et $v_n = \sum_{k=1}^n \frac{1}{k} - \ln (n+1)$.

- (a) Montrer que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.
- (b) En déduire que $\sum_{k=1}^{n} \frac{1}{k} \xrightarrow[n \to +\infty]{} +\infty$.

Culture générale : La limite commune des suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ est appelée constante d'Euler, se note γ et vaut approximativement 0,577 .

Exercice 19 On considère la suite réelle définie par $u_0=1$ et vérifiant pour tout $n\in\mathbb{N}$ la relation de récurrence

$$u_{n+1} = \ln\left(1 + u_n\right)$$

- (a) Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $u_n \ge 0$.
- (b) Déterminer le sens de variations de la suite $(u_n)_{n\in\mathbb{N}}$.
- (c) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et déterminer $\lim_{n\to+\infty}u_n$.

Exercice 20 On considère la suite réelle définie par $u_0=2$ et vérifiant pour tout $n\in\mathbb{N}$ la relation de récurrence

$$u_{n+1} = \frac{3u_n + 1}{u_n + 3}$$

- (a) Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $u_n \geq 1$.
- (b) Déterminer le sens de variations de la suite $(u_n)_{n\in\mathbb{N}}$
- (c) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et déterminer $\lim_{n\to+\infty}u_n$.

Exercice 21 On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par $u_0=0$ et $v_0=3$ et pour tout $n\in\mathbb{N}$,

$$u_{n+1} = \frac{(u_n)^3 - 2}{3}$$
 et $v_{n+1} = \frac{(v_n)^3 - 2}{3}$

- (a) (i) Montrer que pour tout $n \in \mathbb{N}, u_n \in [-1, 0]$.
 - (ii) Montrer que pour tout $n \in \mathbb{N}, v_n \geq 2$.
- (b) (i) Factoriser le plus possible le polynôme $P(X) = X^3 3X 2$.
 - (ii) Déterminer le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$
 - (iii) Déterminer le sens de variation de la suite $(v_n)_{n\in\mathbb{N}}$.
- (c) (i) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge. Dorénavant, on note $\ell=\lim_{n\to+\infty}u_n$.
 - (ii) Déterminer la valeur de ℓ .
- (d) (i) Montrer en raisonnant par l'absurde que $\lim_{n \to +\infty} v_n = +\infty$.
 - (ii) Proposer un code Python permettant d'afficher la valeur du plus petit entier $n \in \mathbb{N}$ tel que $v_n \ge 10^{20}$.

4

Exercice 22 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que pour tout $n\in\mathbb{N}, u_{n+1}=3+2\sqrt{u_n-3}$.

(a) On suppose que $u_0 = 8$. Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $u_n \ge 7$.

Étudier les variations de $(u_n)_{n\in\mathbb{N}}$ et déterminer $\lim_{n\to+\infty}u_n$.

(b) On suppose que $u_0 = 4$. Montrer que pour tout $n \in \mathbb{N}$, u_n existe et $4 \le u_n \le 7$.

Étudier les variations de $(u_n)_{n\in\mathbb{N}}$ et déterminer $\lim_{n\to+\infty} u_n$.

Exercice 23 Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n \frac{(-1)^k}{k}$.

- (a) Montrer que les suites $(S_{2n})_{n\in\mathbb{N}^*}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.
- (b) Montrer que la suite $(S_n)_{n\in\mathbb{N}^*}$ converge.

Exercice 24 Soit $\alpha \in \mathbb{R}_+^*$. Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n \frac{(-1)^k}{k^{\alpha}}$.

- (a) Montrer que les suites $(S_{2n})_{n\in\mathbb{N}^*}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.
- (b) Montrer que la suite $(S_n)_{n\in\mathbb{N}^*}$ converge.

Exercice 25 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que pour tout $n\in\mathbb{N}, u_{n+1}=\frac{u_n+1}{\sqrt{u_n^2+1}}-1.$

- (a) Montrer que si $(u_n)_{n\in\mathbb{N}}$ converge vers une limite ℓ , alors $\ell+1=\frac{\ell+1}{\sqrt{\ell^2+1}}$. En déduire que $\ell\in\{-1,0\}$.
- (b) On suppose que $u_0 < -1$. Montrer que pour tout $n \in \mathbb{N}, u_n < -1$. Montrer ensuite que $(u_n)_{n \in \mathbb{N}}$ est croissante et déterminer $\lim_{n \to +\infty} u_n$.
- (c) On suppose que $u_0 \in]-1,0[$. Montrer que pour tout $n \in \mathbb{N}, u_n \in]-1,0[$. Montrer ensuite que $(u_n)_{n \in \mathbb{N}}$ est décroissante et déterminer $\lim_{n \to +\infty} u_n$.
- (d) On suppose que $u_0 > 0$. Montrer que pour tout $n \in \mathbb{N}, u_n > 0$. Montrer ensuite que $(u_n)_{n \in \mathbb{N}}$ est décroissante et déterminer $\lim_{n \to +\infty} u_n$.