
Lycée Hoche 2025-2026
ECG1 A Mathématiques

TP de Python numéro 5
Approximations numériques

Semaine du jeudi 11 décembre.

Le but de ce TP est d'étudier des méthodes générales permettant d'obtenir des approximations numériques de
réels dans certains contextes :

� des approximations numériques de solutions d'équations sous la forme f(x) = 0, où f est une fonction
continue, et

� des approximations numériques de limites de suites.

On verra également que ces deux contextes sont liés dans un certain nombre de méthodes.

Ces méthodes, dites de calcul numérique, permettent en particulier d'avoir des approximations de solutions
qu'on ne sait pas résoudre algébriquement, c'est-à-dire pour lesquelles on ne sait pas trouver d'expression ex-
plicite.

Exemple 1. Il n'existe pas d'expression explicite (utilisant les fonctions usuelles) donnant la ou les solutions
de l'équation xex = y (de paramètre y ∈ R et d'inconnue réelle x) en fonction de y.

I. Approximations numériques de solutions d'équations de la forme

f(x) = 0

Dans cette partie, on considère un intervalle I (contenant au moins deux points) et une fonction f : I → R qui
est continue sur I.

On va voir des méthodes fournissant des approximations, à une précision voulue, d'une solution de l'équation

f(x) = 0.

On se placera donc toujours dans un contexte où l'on sait que l'équation f(x) = 0 admet au moins une solution
sur I.

L'idée principale sous-jacente à ces méthodes est le théorème des valeurs intermédiaires, sous la forme suiv-
ante.

Théorème 2. Soient I un intervalle, f : I → R une fonction continue sur I et a et b deux points de I
tels que a < b. Si f(a) et f(b) ne sont pas de même signe, alors f s'annule sur le segment [a, b].

Remarque. � D'après la règle des signes, une manière algébrique de signi�er que f(a) et f(b) n'ont pas
le même signe est donnée par :

f(a)f(b) ≤ 0.

Nous utiliserons systématiquement cette idée dans nos algorithmes, il faut être bien capable
d'e�ectuer cette traduction.

� Le théorème des valeurs intermédiaires a bien d'autres formes que nous verrons dans le chapitre sur la
continuité, mais elles sont équivalentes à ce théorème.

� La 2e méthode que nous allons voir, utilisant le principe de dichotomie (voir TP précédent), n'est pas
à proprement parler une utilisation du théorème intermédiaire mais bien plus : l'idée derrière cette
méthode fournit la démonstration de ce théorème (voir chapitre sur la continuité).

1. Recherche par balayage

Dans les paragraphes théoriques de cette partie, a et b sont deux réels tels que a < b, et f est une fonction
continue sur [a, b] telle que f(a)f(b) < 0.

1

La fonction f change de signe sur [a, b] donc s'annule sur [a, b] (par le TVI), et la méthode de recherche par
balayage permet d'obtenir une approximation d'un réel x en lequel f(x) = 0.

En�n, on �xe un réel p > 0 qui est la précision de l'approximation recherchée.

La recherche par balayage (considérée assez naïve, car simple et peu e�cace) consiste à tester si f change de
signe entre les points de la forme a, a+ p, a+ 2p, a+ 3p, ..., a+ kp,

Plus précisément, si l'on détecte un changement de signe de f entre les points a + kp et a + (k + 1)p pour
un certain k, alors on sait que f s'annule sur le segment [a + kp, a + (k + 1)p], de longueur p, et son milieu
a+ (k + 1

2)p fournit alors une approximation avec précision p (et même en fait p
2) d'une solution de l'équation

f(x) = 0.

Remarque. Ce changement de signe a lieu pour le plus petit k ∈ N tel que f(a)f(a + (k + 1)p) devient
négatif (car alors, f(a) et f(a + kp) ont le même signe, alors que f(a) et f(a + (k + 1)p) sont de signe
opposés).

L'algorithme de recherche par balayage s'organise comme suit.

� On déclare une variable k initialisée à 0.

� Tant que f(a)f(a+ (k+ 1)p) > 0, on incrémente k de 1.

� Fin de la boucle précédente : on renvoie a + (k + 1
2)p, qui est l'approximation recherchée d'une solution

de f(x) = 0.

Remarque. En fait, dans cette méthode, on utilise le point b uniquement pour savoir que f s'annule en un
point supérieur à a (et donc que cette recherche aboutira).

Remarque. On peut toujours mettre une équation donnée sous la forme f(x) = 0, en faisant passer le
membre de droite à gauche du signe égal par soustraction.

Exercice 3. On souhaite appliquer la méthode de recherche par balayage pour déterminer une approximation
à 10−6 près d'une solution positive de l'équation (E) : xex = 1.

1. Quelle fonction f faut-il poser pour mettre (E) sous la forme f(x) = 0 ?

2. Justi�er qu'une solution positive de (E) existe, et qu'on peut appliquer la méthode de recherche par
balayage à f à partir de 0.

3. Écrire le code d'une fonction Python d'entête def f(x): prenant en entrée un réel x et renvoyant en
sortie f(x).

4. Utiliser l'algorithme de recherche par balayage décrit plus haut pour obtenir une approximation à 10−6

près d'une solution positive de l'équation (E).

Remarque. Plus on veut une approximation précise, plus le paramètre p choisi sera proche de 0 et plus
l'algorithme e�ectuera de calculs.

Plutôt que de réécrire à chaque fois les étapes de l'algorithme de recherche par balayage, on peut l'implémenter
une fois pour toute pour s'en resservir plus facilement.

Remarque. En Python, on peut tout à fait manipuler une fonction Python comme n'importe quelle variable,
et la mettre en argument d'une autre fonction.

Exercice 4. Écrire le code d'une fonction d'entête def balayage(f, a, p): prenant en entrée :

� une fonction Python f qui implémente une fonction mathématique f ,

2

� un réel a et un réel strictement positif p,

� ces données étant soumises aux hypothèses de cette partie (f est continue sur un intervalle contenant a
et s'annule sur cet intervalle),

et renvoyant en sortie une approximation à précision p d'une solution supérieure à a de l'équation f(x) = 0.

Remarque. Rappel : pour tout réel positif y,
√
y est dé�ni comme l'unique réel positif x véri�ant x2 = y.

Exercice 5. Utiliser l'exercice précédent et la remarque ci-dessus pour donner des approximations à 10−5 près
des réels

√
10 et

√
28. Comparez votre résultat à celui donné par la fonctions np.sqrt.

Des fois, il peut être nécessaire de trouver le point de départ a vous-même avant d'utiliser la recherche par
balayage.

Exercice 6. En utilisant la méthode de recherche par balayage, déterminer une approximation à 10−5 près
d'une solution de l'équation x5 − 100x3 + 20x+ 1 = −20.

2. La recherche par dichotomie

C'est une méthode plus riche qui, en plus de fournir un algorithme d'approximation, permet de démontrer le
théorème des valeurs intermédiaires. On rappelle que le mot dichotomie est d'origine grecque et signi�e couper
en deux.

� On considère toujours une fonction f continue sur un segment [a, b] �xé (avec a et b réels tels que a < b)
et telle que f(a)f(b) ≤ 0.

� On cherche une approximation à précision p > 0 �xée d'une solution sur [a, b] de l'équation f(x) = 0.

L'idée est la suivante:

� L'algorithme s'e�ectue par étapes. À l'étape n, on va a�ner notre segment de recherche [an, bn] d'une
solution de f(x) = 0 en un segment [an+1, bn+1] de longueur moitié.

� Initialement, à l'étape n = 0, on sait que f s'annule sur [a, b] et on pose donc a0 = a et b0 = b.

� Pour passer de l'étape n à l'étape n+ 1, on considère le milieu mn =
an + bn

2
du segment [an, bn]. On a

donc an < mn < bn et :

� Si f change de signe entre an et mn, on pose an+1 = an et bn+1 = mn.

� Sinon, f change de signe entre mn et bn, on pose alors an+1 = mn et bn+1 = bn.

Dans tous les cas, on construit ainsi un nouvel intervalle [an+1, bn+1] de longueur moitié par rapport à
[an, bn] sur lequel f change encore de signe donc s'annule.

� On arrête l'algorithme à la première étape n pour laquelle le segment de recherche [an, bn] devient de

longueur inférieure à p, et on renvoie son milieu
an + bn

2
comme approximation voulue.

3

Exercice 7. On considère l'équation (E) : e−x2

= 2x, d'inconnue réelle x.

1. Quelle fonction f faut-il considérer pour mettre (E) sous la forme f(x) = 0 ? Véri�er que f change de
signe entre 0 et 2.

2. Compléter le code Python ci-dessous pour qu'il a�che une approximation à 10−6 près d'une solution de
(E) sur [0, 2], en utilisant la recherche par dichotomie.

1 import numpy as np

2

3 # définition de f

4 def f(x):

5 return ...

6

7 # Intervalle de recherche et précision

8 a,b=0,2

9 p=10**(-6)

10

11 while ... : # exprimer la condition d'arrêt

12 # milieu de la zone de recherche

13 m=(a+b)/2

14 # mise à jour de la zone de recherche

15 if :

16 ... = m

17 else :

18 ... = m

19 # fin de boucle : on affiche l'approximation

20 print((a+b)/2)

Exercice 8. Écrire le code d'une fonction d'entête def dichotomie(f, a, b, p): prenant en entrée :

� Une fonction Python f qui implémente une fonction mathématique f continue,

� deux réels a et b entre lesquels f change de signe,

� un réel p> 0

et renvoyant en sortie une approximation à précision p d'une solution de l'équation f(x) = 0 sur [a, b] obtenue
par la méthode de recherche par dichotomie.

Remarque. En pratique, il pourrait être di�cile de trouver les deux points a et b pour appliquer l'algorithme.
On peut alors e�ectuer un balayage grossier pour déterminer deux points entre lesquels f change de signe.

Exercice 9. On considère l'équation (E) : x5−123x = 123. On considère le polynôme f : x 7→ x5−123x−123.
f est continue en tant que polynôme et permet d'écrire (E) sous la forme f(x) = 0. On remarque que :

4

� f(0) = −123 < 0,

� f(x) −−−−−→
x→+∞

+∞

de sorte que f change nécessairement de signe sur R+ (c'est le résultat d'un exercice classique sur la continuité).

1. E�ectuer un balayage grossier à partir de 0 pour déterminer un réel b en lequel f(b) > 0.

2. En déduire une approximation à 10−8 près d'une solution positive de (E), obtenue par dichotomie.

3. La méthode de Newton

Nous allons moins rentrer dans les détails de cette méthode a�n de rester concis, mais la méthode de Newton
est d'une importance capitale en mathématiques (elle se généralise à énormément de contextes).

On souhaite toujours produire une approximation numérique d'une solution d'une équation de la forme (E) :
f(x) = 0, où f est une fonction réelle.

On se placera dans le cadre suivant :

� On dispose d'un intervalle I sur lequel on sait que f s'annule.

� On suppose f dérivable sur l'intervalle I, et on suppose : ∀x ∈ I, f ′(x) ̸= 0.

On cherche alors une approximation d'une solution α de (E). L'idée est de partir d'un point c su�samment
proche de α (on restera évasif sur ce point), et d'utiliser l'approximation de f donnée par sa tangente pour se
rapprocher de α.

Avec une étape, la méthode de Newton à partir de c fournit l'approximation c− f(c)

f ′(c)
de α.

c− f(c)

f ′(c)
est l'unique solution de l'équation f(c) + (x− c)f ′(c) = 0.

L'idée de Newton est alors de répéter ce processus pour fournir une approximation de α.

Dans le cas où I est un segment [a, b], on peut donc suivre l'algorithme suivant :

� Un considère un réel u0 ∈ [a, b],

� puis on calcule successivement des termes de la suite (un)n∈N donnée par la relation de récurrence :

un+1 = un − f(un)

f ′(un)
.

� On admettra sans le quanti�er que pour N su�samment grand, uN fournit une bonne approximation
d'une solution de l'équation f(x) = 0.

Cette méthode pose beaucoup de problèmes en pratique : les termes un calculés restent-ils dans l'intervalle I
? Combien de termes devons nous calculer pour avoir une approximation à 10−6 près ? Nous n'allons pas les
résoudre ici.

En pratique, on se contentera de faire 10 à 100 itérations, en admettant que la méthode s'applique.

5

Exercice 10. On souhaite appliquer la méthode de Newton pour déterminer une approximation de la solution
α sur [0, 1] de l'équation (E) : e−x = x.

1. Quelle fonction dérivable f doit-on poser pour mettre (E) sous la forme f(x) = 0 ? Écrire deux fonctions
Python f et f' qui implémentent informatiquement les fonctions f et f ′.

2. Justi�er que (E) admet une unique solution α sur [0, 1].

3. Utiliser la méthode de Newton pour donner une approximation de α. On procédera à 20 itérations de la
méthode de Newton.

4. Comparer le résultat avec celui obtenu via la fonction dichotomie avec une précision de 10−8.

II. Utilisations de suites et approximations

Un principe général pour cette partie : on peut utiliser des encadrements obtenus par des calculs théoriques
a�n de fournir des approximations numériques de nombres réels en Python.

1. Utilisation directe d'encadrements

Le contexte général aux exercices ci-dessous est le suivant :

� On souhaite donner une approximation à précision p > 0 donnée d'un réel α.

� On dispose pour cela d'une suite (un)n telle que un −−−−−→
n→+∞

α.

� On majore |un − α| par une suite explicite simple (en fonction de n) qui tend vers 0.

� On utilise cette majoration pour trouver un entier N pour lequel uN fournit une approximation à précision
p de α.

Ces méthodes s'utilisent particulièrement dans des méthodes dites de point �xe, qui permettent d'approximer
des solutions d'équations de la forme f(x) = 0 (voir plus bas).

Commençons par un premier exemple simple.

Exemple 11. Soit g :
R+ −→ R
x 7−→ 1 +

√
x
.

On considère la suite u = (un)n∈N dé�nie par u0 = 2 et ∀n ∈ N, un+1 = g(un).
On suppose que, dans le cadre d'un exercice de mathématiques, on a démontré que (un)n∈N admet une limite
α, ainsi que bien d'autres résultats.
Puis, on tombe sur l'enchainement des questions suivantes.

� (N) Montrer que ∀n ∈ N, |un − α| ≤
(

1

2
√
2

)n

.

� (N + 1) En déduire un code Python permettant d'a�cher une approximation de α avec une précision
de 10−6.

L'idée, pour répondre à la question (N + 1), est d'utiliser l'encadrement de la question (N) :

∀n ∈ N, |un − α| ≤
(

1

2
√
2

)n

.

On écrit donc un code Python qui calcule successivement les termes de u jusqu'à avoir calculé un terme un

pour lequel n est assez grand pour véri�er : (
1

2
√
2

)n

≤ 10−6.

Ceci est possible car

(
1

2
√
2

)n

−−−−−→
n→+∞

0 (c'est une suite géométrique, de raison
1

2
√
2
∈]− 1, 1[).

Pour un tel entier n, on a alors |un − α| ≤ 10−6 par transitivité.
Autrement dit, un fournit une approximation de α à 10−6 près. On écrit donc le code suivant.

6

1 import numpy as np

2 # définition de g

3 def g(x)=

4 return (1+np.sqrt(x))

5

6 # Calculs de termes u(n) jusqu 'à un n assez grand

7 u=2 # contient les termes successifs de u

8 n=0 # contient l'indice du terme présent dans u

9 q=1/(2* np.sqrt (2)) # simple raccourci

10 while q**n > 10**(-6): # condition d'arrêt avec le majorant obtenu

11 u=g(u)

12 n+=1

13 # fin de la boucle : n est assez grand

14 print(u)

Exercice 12. On �xe un entier N ≥ 1 qui n'est pas le carré d'un entier. Le but de cet exercice est de fournir
une approximation de

√
N avec l'aide de Python, sans utiliser la fonction np.sqrt : c'est ce genre de démarche

qui permet de dé�nir la fonction informatique np.sqrt.

On considère pour cela la fonction g : x 7→ N + x2

2x
, de domaine de dé�nition sur R∗.

1. Montrer qu'il existe un unique réel positif α tel que g(α) = α et donner une expression de α en fonction
de N .
On dit que α est un point �xe de g.

2. Montrer que [1,+∞[est stable par g, c'est-à-dire que g([1,+∞[) ⊂ [1,+∞[.

3. Montrer que : ∀x ∈ R∗
+, g(x)− α =

(x− α)2

2x
.

On considère la suite (un)n∈N dé�nie par

{
u0 = ⌊α⌋
∀n ∈ N, un+1 = g(un)

.

4. Montrer que pour tout n ∈ N, un ∈ [1,+∞[et |un+1 − α| ≤ |un − α|2

2
.

5. En déduire que pour tout entier n, |un − α| ≤
(
1

2

)2n−1

, puis que un −−−−−→
n→+∞

α.

6. Écrire le code d'une fonction d'entête def terme_initial(N): prenant en entrée l'entier N et renvoyant
⌊α⌋ (sans utiliser np.sqrt).

7. En déduire le code d'une fonction Python approx_racine prenant en entrée l'entier N et un réel p > 0,
et renvoyant en sortie une approximation à précision p de

√
N obtenue sans utiliser la fonction np.sqrt.

2. Remarque générale sur les méthodes dites de points �xes

Soit f une fonction réelle, notons D son domaine de dé�nition. Reprenons le contexte de la première partie, où
l'on cherche à produire des approximations de solutions de l'équation f(x) = 0.

Dé�nition 13. Soit g une fonction réelle. On appelle point �xe de g tout réel x du domaine de dé�nition
de g véri�ant :

g(x) = x.

Soit g la fonction dé�nie sur D par g(x) = f(x) + x. Alors, pour tout réel x ∈ D, on a l'équivalence :

f(x) = 0 ⇐⇒ g(x) = x.

Autrement dit, les solutions de l'équation f(x) = 0 sont exactement les points �xes de g.

D'autre part, dans un grand nombre de cas (quand g -ou de manière équivalente, f - est continue sur D), on
peut montrer que si une suite u ∈ DN véri�e : ∀n ∈ N, un+1 = g(un), et admet une limite �nie l ∈ D, alors l
est un point �xe de g.

7

Démonstration. On suppose que un −−−−−→
n→+∞

l, que un ∈ D pour tout entier n et que l ∈ D. Par continuité

de g en l, on a donc :
g(un) −−−−−→

n→+∞
g(l).

Mais : ∀n ∈ N, un+1 = g(un). Donc un+1 −−−−−→
n→+∞

g(l).

Or, on sait que un −−−−−→
n→+∞

l, donc un+1 −−−−−→
n→+∞

l.

Par unicité de la limite, on a donc g(l) = l : l est un point �xe de g.

Cette remarque est souvent utilisée dans les exercices : pour déterminer une approximation d'une solution de
f(x) = 0, on pose g(x) = f(x) + x et une s'intéresse, conformément à la partie précédente, à une suite véri�ant
la relation de récurrence un+1 = g(un).

Exemple 14. L'exercice 12 est un exemple !
√
N est l'unique solution positive de l'équation f(x) = 0,

où f : x 7→ N − x2

2x
(la division par 2x rend la méthode plus e�cace), et la fonction g n'est autre que

x 7→ f(x) + x.

3. Utilisation de suites adjacentes

On rappelle le théorème des suites adjacentes:

Théorème 15. Soient u = (un)n∈N et v = (vn)n∈N deux suites réelles. On suppose que :
� u est croissante, v est décroissante, et
� vn − un −−−−−→

n→+∞
0.

Alors, u et v convergent vers une limite commune l et :

∀n ∈ N, un ≤ l ≤ vn.

En présence de telles suites adjacentes, et avec les notations de l'énoncé, on peut utiliser l'encadrement

∀n ∈ N, un ≤ l ≤ vn

pour fournir des approximations de l.

En e�et, pour avoir une approximation de l avec une précision p > 0, il su�t de calculer les termes de un et
vn jusqu'à trouver un entier n tel que |vn − un| < p, car alors l'intervalle [un, vn] est de longueur au plus p et
contient l. Pour un tel entier n, une approximation de l à précision p est alors donnée au choix par un, vn ou

par exemple
un + vn

2
.

Exercice 16. On pose, pour tout n ∈ N∗, un =

n∑
k=1

1

k2
et vn = un +

1

n
. Montrer que (un)n et (vn)n sont

adjacentes et convergent vers une limite commune l. On admet que cette limite commune est
π2

6
).

En déduire un code Python permettant de fournir une approximation à 10−6 près de l.

Exercice 17. On pose, pour tout n ∈ N∗, un = (

n∑
k=1

1

k
)− ln(n) et vn = (

n∑
k=1

1

k
)− ln(n+1). Montrer que (un)n

et (vn)n sont adjacentes et convergent vers une limite commune γ.

En déduire un code Python permettant de fournir une approximation à 10−6 près de γ.

8

	Approximations numériques de solutions d'équations de la forme f(x)=0
	Recherche par balayage
	La recherche par dichotomie
	La méthode de Newton

	Utilisations de suites et approximations
	Utilisation directe d'encadrements
	Remarque générale sur les méthodes dites de points fixes
	Utilisation de suites adjacentes

